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INTRODUCTION 

Increasing requirements for the quality of drilling-milling-boring 

machines, their technological complexes in connection with a general 

increase in mechanical engineering precision, the manufacture of parts 

from difficult-to-machine materials, the rational use of high-performance 

cutting tools, forces us to look for ways to improve the main forming units 

that have a decisive effect on productivity and processing precision. The 

introduction of progressive machining modes, reducing to a minimum the 

time of idle running and auxiliary movements leads to a significant 

increase in the machines speed characteristics, in particular the spindle 

units of machine equipment. These main technological characteristics of 

metal-cutting equipment are limited, as a rule, by their vibrostability, for 

the assessment of which it is necessary to know the dynamic characteristics 

of multi-operational machines and its main elements. 

Besides, an increase in the efficiency of processes implemented on 

modern technological complexes based on multi-operational equipment is 

associated with an increase in the dynamic stability of the main units of 

metal-cutting machines. Analysis of the balance of compliance and 

vibration modes of the shaping units of milling-drilling-boring machines 

showed that the most intense vibrations are characteristic of such forming 

units as "Spindle-Arbor - Tool" and "Table - Workpiece". 

Interrupted cutting operations such as milling are characterized by a 

large range of force effects arising during machining, including the 

probabilistic component in the form of a set of dynamic harmonics. 

It is difficult to overestimate the role of computational methods for 

choosing the optimal design options, both in terms of rigidity and 

vibrostability, which in many cases makes it possible to apply strict formal 

solutions instead of approximate solutions or complex experiments, and 

use them in the analysis of the dynamics of the functioning of metal-cutting 

equipment. 
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At the same time, the successful use of computers and software for 

the automation of production process control and engineering activities 

gives an effect only with comprehensive research and mathematical 

description of technological processes implemented on machine tools, and, 

consequently, the creation of mathematical models of these processes. 

There is a need for research work to create and improve algorithms for the 

implementation of these mathematical models using modern computing 

technology. 

When studying the structures of shaping units according to the 

criterion of vibrostability, it becomes necessary to build 3D models in 

developed computer-aided design systems. It is efficient to carry out solid 

modeling in the integrated CAD KOMPAS-3D, developed by the ASCON 

group of companies. Since from KOMPAS-3D V.15 introduces a new 

design philosophy, relies on the commands "Layout geometry", 

"Collections" and "Copy geometry", the integrated use of which is aimed 

at optimizing the teamwork process. Thanks to a new round of 

development of KOMPAS-3D, the application “Shafts and mechanical 

transmissions”, which are most demanded in mechanical engineering, has 

reached a higher, in functional terms, level. In KOMPAS-3D, the MinD 

intelligent design technology has undergone fundamental changes in terms 

of convenience and quality of work. An irreplaceable "Select by 

properties" functionality has appeared in it, which allows you to find any 

objects by certain properties. 

Along with geometric modeling, it is necessary to carry out a 

comprehensive engineering analysis of the designed object using CAE-

analysis (Computer Aided Engineering) tools, as well as a complex of 

calculations based on strength and stiffness criteria. 

We need programs that give an idea of the stress-strain state for the 

forming parts and machine units. Such a software package is represented 

by the well-known CAD/CAE system APM WinMachine, developed by 

the scientific and technical center STC APM. 

Starting with the KOMPAS 3D V.13 version, the APM FEM module 

is integrated into its structure, they are an integral part of a unified design 



 
5 

and analysis environment using an associative geometric model, a unified 

library of materials and an interface common with KOMPAS-3D. 

Based on these considerations, the correct choice of such design 

solutions that ensure the stable operation of metal-cutting machines in 

various ranges of cutting conditions becomes important. 

The subject of this monograph is the processes and algorithms for 

assessing the dynamic quality of the functioning of metal-cutting 

machines, based on computer modeling and modern mathematical 

environments, such as MatLab. 

The purpose of this kind of research is to improve the procedures for 

determining the frequency characteristics of spindle assemblies and to 

provide designers with algorithms for making optimal decisions on the 

criterion of vibrostability. 

To achieve this goal, several objectives of this research have been put 

forward: 

- development of methods and algorithms for determining the 

dynamic characteristics of the elastic system "Spindle-Arbor-Tool" (SAT) 

by the method of transfer matrices; 

- creation of programs for the construction of frequency 

characteristics and Amplitude phase-frequency characteristics (APFC) of 

spindle nodes in the mathematical environment MatLab; 

- development of methods and algorithms for the analysis of 

vibrostability by the D-partition method; 

- formation of the toolkit for assessing the structures dynamic quality 

with a random nature of external influences using the finite Fourier 

transform; 

- improvement of frequency characteristics estimates using the 

apparatus of spectral windows; 

- implementation of procedures for assessing the dynamic quality of 

multifunctional lathes of turning and milling groups. 
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ANALYSIS OF WORKS IN THE MACHINE  

DYNAMICS FIELD 
 

In the fundamental work on the dynamics of machine tools [1], a 

system of indicators of the dynamic quality of machine tools (margin and 

degree of stability, operation speed and deviation of parameters of a 

dynamic system under external influences) is introduced. A general 

methodology for theoretical and experimental analysis and evaluation of 

machine tools [Кудинов] according to these indicators is given. A position 

on the closedness of the machine dynamic system, which is determined by 

the interaction of the elements of the elastic system "machine-tooling-part" 

with the working processes of cutting, friction and drives is introduced. At 

the same time, the author limits the variety of particular features of 

dynamic phenomena in machine tools to linearized systems. These 

limitations are justified by the possibility of analyzing a significant part of 

machine tool applications with the accuracy of the results sufficient for 

practice. The dynamic system of the machine according to V.A. Kudinov 

is formed by a combination of an elastic system (machine, arbor, tool, part) 

and work processes in their interaction. 

The analysis of the dynamic system features for the machine made it 

possible to introduce a new concept of the "equivalent elastic system" 

(EES) of a metal-cutting machine. It is directly related to the division of 

zones where the working processes by the elements of the elastic system 

take place. This approach proved to be effective in solving the following 

tasks: 

1. Tasks associated with the choice of a drive or its calculation, when 

the element "mechanical system", including the processes of cutting and 

friction with their connections, is considered as equivalent. 
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2. Tasks of the analysis of friction conditions in machine slideways or 

bearings of machine tool assemblies. Here the equivalent element 

combines the elastic system and the processes in the engines. 

3. Problems of calculating cutting conditions, where the elastic system 

of the machine and the processes in the engine and friction are considered 

as an equivalent element. 

The approach proposed by prof. V.A. Kudinov proved to be 

productive in various applications of the machine tool industry. So in work 

[2], the dynamics of auxiliary movement mechanisms, in particular, 

mechanisms of periodic rotation of nodes (Maltese, cam triebstock, gear-

linkage and coulisse mechanisms) is considered. Besides, the dynamics of 

clamping and loading mechanisms, including those designed for an 

automatic tool change, are considered in detail. 

In work [3], the research of the EES of special diamond boring 

machines is carried out and the frequency characteristics of boring bars for 

diamond boring heads are determined, and designs of a dynamic vibration 

damper are proposed to improve the dynamic quality. For these structures, 

a model has been built, based on which the APFC of the elastic system 

"spindle-cantilever" with a vibration damper is constructed. Based on the 

results obtained in [4], the dynamic characteristics of the thin boring 

process were determined, and the determination of the time constant of 

chip formation Tp and specific cutting forces Кр is carried out based on the 

constructed nomograms, which facilitates the calculation of the cutting 

process characteristics. 

At the same time, the dynamic characteristic of the cutting process 

obtained in [1, 3], as a result of direct experiments, needs to be refined. For 

the case of flow chip formation, the refinement is associated with the 

representation of the process of chips deformation that moving along the 

cutter as along a beam on a compliance base [4]. Based on the found 

dependence of the contact length the chip and the tool, transfer functions 

that characterize the change in the contact length with a change in the cut 
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thickness are obtained. Comparing the results obtained with the available 

experimental data, one can note their qualitative agreement [4]. 

At the level of layout design, it is proposed to use not a generalized 

criterion as a criterion for comparing layouts, but an indicator of dynamic 

quality at limiting operations [5, 6]. Based on experiments on lathes, it was 

shown [5] that with stable cutting the level of oscillations in the cutting 

zone is most intense in the low-frequency region corresponding to the 

natural frequencies of oscillations of the carrier system (CS) of the 

machines. In this case, the dynamic characteristics of the CS, calculated 

under the selected design conditions, will characterize the quality of the 

layout from the standpoint of not only the stability of the process but also 

the influence of vibrations on the processing accuracy. A similar approach 

is used to compare the layouts of multipurpose machines of the milling-

drilling-boring group [6, 7]. Comparison of the CS dynamic characteristics 

for various layouts, differing in the mutual arrangement of stationary and 

movable blocks, in particular, in the arrangement of tool storages and a 

spindle head on the rack is carried out. The indicator of dynamic 

compliance was used as a criterion for comparison. For different 

technological operations, the values of dynamic compliance are calculated 

at the first and second natural frequencies for different designs of the 

spindle head. On this basis, a rational design of the elements of the carrier 

systems was selected. 

In the research of the dynamics of multi-purpose machine tools, the 

finite element method is widely used. Thus, in [8, 9], an integrated 

approach to the problem of multivariate analysis of the elastic systems (ES) 

dynamic characteristics of machine tools is presented. Based on their 

schematization with the help of super elements connected at the boundary 

nodal points of the finite element mesh. The balance of dynamic 

compliance of a multi-purpose machine with a cross table has been 

determined [8, 10]. To detail the influence of design parameters on its 

dynamic characteristics, the procedure of energy analysis of ES 

oscillations at certain vibration modes at frequencies of 41 Hz and 66 Hz 
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was used. The results of the analysis made it possible to give 

recommendations on changing the designs of the machine tool's ES 

elements to improve its dynamic characteristics. 

The analysis of the dynamic quality of machine tools for high-speed 

machining (the operation speed parameter n·d = (2...3)·106 mm/min, 

determined through the spindle rotational speed n and the diameter of its 

front stage d) is associated with the monitoring of spindle assemblies 

according to the characteristics of displacements and vibrations [11–14]. 

To control and predict the nature and magnitude of vibrations during 

processing, special programs have been created that take into account the 

state of the spindle assembly and tool, the material of the workpiece, the 

rigidity of its fastening and other characteristics. 

In [15, 16], a procedure for directed research of the design and 

technological parameters influence on the dynamics of the Spindle Node 

(SN) is considered using mathematical modeling based on the proposed 

model of the SN dynamics for the operation of surface grinding with the 

periphery of the abrasive wheel. When constructing the model, an analysis 

of the influence of external factors, such as cutting forces, was carried out, 

in the analytical dependences of which the main parameters of the cutting 

process were explicitly taken into account in the form of coefficients 

characterizing the parameters of the workpiece materials and the abrasive 

tool, as well as the grinding modes. 

The peculiarity of this model is that, in addition to vertical and 

transverse vibrations, torsional vibrations of the spindle cross-sections are 

taken into account, which, in turn, affect the behaviour of the tool. The 

mathematical model is parametric and non-linear due to periodic changes 

and non-linearity of the stiffness and damping coefficients of the rolling 

bearings. 

Simulation of the SN dynamics was carried out similarly, depending 

on the standard sizes and errors of the raceways of the rolling bearing units 

at fixed processing modes [15]. The author found that with an increase in 

the number of rolling elements of bearings from 10 for the 66408 series to 
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16 for the 46108 series at ns = 2000 rpm, the vibration displacements of the 

tool decrease in the vertical and transverse directions by about 10%. 

The modeling procedure consisted of varying certain design and 

technological parameters and cutting conditions with the rest unchanged. 

The calculation results in the form of vibration displacement diagrams of 

the SN elements, depending on the change in the technological parameters 

of grinding, are presented in [15]. 

The calculation of the dynamic characteristics of the technological 

system is implemented in the form of the Spindel Dynamic 6.6020 software 

package [15, 16] using the C ++ programming language in the Visual 

Studio.NET environment. 

The solution is based on the Runge-Kutta method with automatic step 

selection. The software package is aimed at solving problems: 

1) calculation and forecasting of vibration characteristics of existing 

spindle nodes; 

2) selection of cutting conditions and design of structural elements of 

the spindle node. 

Scientists from MSTU "STANKIN" and "ENIMS" have developed 

the SpinDyna software package (version 2.3) [17], which make it possible 

to model the SN structures on elastic supports. The complex includes 

several modules: forming a geometric model, setting parameters of 

supports, etc. The program uses a modern interface using form panels; the 

SN model includes the following elements: span of a beam, joint, support, 

etc. So the “Support” element is intended for modeling bearings or their 

combinations, and the geometric dimensions of the bearings and their 

stiffness are set manually or selected from the database. When constructing 

models of spindle dynamics, the method of initial parameters in a matrix 

formulation [18] was used. It based on the formation of transfer matrices 

of individual sections between the initial and final nodes. 

A feature of this author's product is the consideration of the spindle 

damping mechanisms in its supports and joints using a viscous and elastic 
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model based on the analysis of the imaginary part of the dynamic stiffness 

of the spindle node under research. 

Along with the criterion of rigidity in high-speed spindle heads, the 

criterion of vibrostability and the phenomenon of loss of stability are 

decisive. This kind of problem for a rotating shaft transmitting torque is 

considered in [19]. The author estimates the moment of loss of stability of 

the deformed and rotating shaft depending on the axial force and torque. 

 The use of CAD SolidWorks Simulation made it possible to obtain the 

value of the critical load, to estimate the conditional time in which there is 

a sharp increase in the displacement of the shaft sections and to fix the 

corresponding interval of angular velocities. At the same time, the 

influence of the characteristics of the shaft supports on the behavior of the 

structure under research during loading is not considered. 

Some works [20–22 ] are devoted to the research of the elastic system 

dynamics "Spindle-Arbor-Tool" (SAT). In researches of the vibrostability 

of milling machine spindles, elastic connections spindle-arbor and arbor-

tool were often not taken into account when constructing dynamics models. 

At the same time, these connections form a significant proportion of errors 

inherent in the machines of this group. 

The dynamic quality of the SAT system is influenced by the radial 

and rotational stiffness of the S-A, as well as the damping corresponding 

to these stiffnesses [20, 21]. Despite the insignificant mass of the arbor, the 

presence of backlash and dry friction forces leads to the appearance of 

nonlinear phenomena in the conical connection S-A and the need to take 

into account the forces of inelastic resistance and the phenomena of 

damping of oscillations in the general model of the dynamics of the system 

under consideration. 

A similar approach is presented in [22], where the dynamic subsystem 

of the spindle group "Clamping fork" of automatic lathes is investigated. It 

is the presence of backlash in the connection of the fork with the clutch of 

the clamping mechanism through the bearings, as well as significant 

frictional forces when the fork is installed on the axes, which leads to 
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significant nonlinearity. The damping forces (in the case of proportionality 

of the latter to the displacement velocities) in the problem of the dynamics 

of the SAT system can be taken into account using the matrix of the 

concentrated damping force [22]. 

More and more works are considering the issues of the machine tools 

dynamics during cutting when oscillations caused by the simultaneous 

action of a significant number of disturbances can be considered as 

stationary random processes [23–25]. 

The advent of modern design systems (CAD) and engineering 

analysis (CAE) made it possible to more effectively solve the problems of 

dynamic quality and vibration resistance of metal-cutting machines. Such 

an integrated CAD system is APM WinMachine [23]. This system includes 

the APM Structure 3D module. It is a versatile system for researching and 

designing the rod, shell, solid, and mixed structures. 

Based on this system, it is possible to calculate an arbitrary three-

dimensional structure with arbitrary loading and fastening. As a result of 

the calculations performed by the system, the following information can 

be obtained: 

- maps of stress and strain distribution in arbitrary spindle sections; 

- the stability factor of the structure according to Euler; 

- stress-strain state of the structure at large displacements 

(geometrically nonlinear problem); 

- frequencies and forms of natural vibrations of the structure; 

- change in the stress-strain state of a structure under the influence of 

loads arbitrarily changing in time. 

The system implements the ability to automatically generate dynamic 

loading and perform stability analysis (according to Euler), which refers to 

structures that work in tension-compression. In this case, for each structure 

with a given loading scheme, the value of the load is determined at which 

the initial form of equilibrium becomes unstable. The calculation for the 

natural frequencies of the structure is carried out taking into account the 

distributed mass matrix and consists in solving the generalized eigenvalue 
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problem. When calculating for forced vibrations, it is considered that the 

structure is subject to the action of force factors that change over time 

according to a certain law. 

For an approximate account of damping, the coefficients are selected 

in such a way that the decrements of the oscillations are constant at 

different natural frequencies. This provides the frequency-independent 

damping found in many machine tool designs. 

To solve such a set of dynamics problems in a CAD environment, it 

is necessary to first build a solid 3D model of the spindle node, which can 

be researched using an appropriate CAE type system. To build a solid 

model, you can use the fast-progressing integrated CAD KOMPAS-3D. 

Starting with KOMPAS-3D v.13, the system has integrated the APM FEM 

program, developed by the scientific and technical center APM 

WinMachine [26, 27]. 

Thus, the availability of solid modeling toolkit and finite element 

method toolkit expands the area of research and significantly increases the 

labour productivity for the designer of modern metal-cutting equipment. 
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1. RESEARCH OF DYNAMIC SPINDLE-ARBOR-TOOL 

FOR MILLING MACHINE TOOL 
 

1.1. Determination of dynamic characteristics by the  

method of transfer matrices 

The SAT elastic system (Figure 1.1) is considered as a beam on elastic 

supports with viscous damping [28-31]. The SAT system is divided into 

four sections, delimited by an abrupt change in the moments of the sections 

inertia, the concentrated mass of the gear wheel (m4, I4x) and the arbor (m0, 

I0x). The disturbing effect of the cutting process is force P0(τ). When 

calculating the SAT dynamic characteristics, the initial parameters method 

in the matrix formulation is used [18, 28]. 

The differential equation of system oscillations is expressed through 

the amplitudes: displacements (yk), the angle of rotation φk·L, the bending 

moment /EILM k
2

 and transverse force /EILQk
3

. 

 

 
Figure 1.1. Elastic system spindle - arbor - tool 
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The transposed vectors of parameters at the SAT free ends (in the zero 

and fourth sections) without taking into account the external load have the 

form: Y0 = [y0 φ0L 0 0]T; Y4 = [y4 φ4L 0 0]T. The matrix equation without 

taking into account the external load takes the form: 

 

Y4 = P·Y0 = M4·A3 R3 ·R2·T1·G0 ·Y0,            (1.1) 

 

where M4 – concentrated mass matrix, which takes into account the action 

of the concentrated force P4 and the inertial forces moment of the gear; A3, 

G0 – transitional stiffness matrices of rods of length L3 and L0 [1]; R3, R2 

– matrices of upper and lower supports, elastic concerning transverse i  

and angular i  displacements, taking into account the centrifugal forces zi, 

gyroscopic moments gi and damping in the support fi [18]; T1 – matrix of 

elastic-friction joint modeling the conical connection of the spindle and the 

shank of the arbor (Figure 1), elastic concerning the transverse Q1 and 

angular F1 displacements in the presence of a concentrated mass of the 

arbor M1 (I1х µ1): 

 

T1 = М1·Q1·Ф1 = [1 0 0 0; 0 1 0 0; 0 (σ1- δ1) 1 0; (ν1-ε1) 0 0 1]T, 

 

where L/EIw I/EI; δLw μν xi
2

1
32

11 ==  – amplitude values of the 

concentrated force and the inertial forces moment; i , δi – coefficients 

characterizing the rigidity of the conical connection [3]. For this variant of 

calculations, the matrix of the hinge T1: 

 

T1 = [1 0 0 0; 0 1 0 0; 0 (3.27-4.3·10-8w2) 1 0; (1.05·10-5w2-2071) 0 0 1]T. 

 

Taking into account the external load in sections "0" and "4", equation 

(1.1) takes the form: 

 

Y4 = P (Y0-S0)-S4;  
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S0 = [0 0 0 (P0L
3/EI)]T = [0 0 0 0.32]; S4 = [0 0 0 0.2].    (1.2) 

 

The definition of a transfer matrix is reduced to the multiplication of 

six matrices of size 4×4. So at the SAT node ends, two of the four 

parameters in the matrices – columns Y0 and Y4 are equal to zero, which 

makes it possible to reduce the complexity of calculations by keeping only 

a part of the elements in the matrix P (the rest are marked with a sign  ). 

To determine the pattern of the SAT node displacement, we detail 

expression (1.2): 
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



















−

















































EI
LP

EI
LP

-

L

y

ggg

ggg
3

4
3

0

0

0

444241

343231
0

0

0

0


       (1.3) 

From the matrix equation (1.3) we select two linear equations 

concerning the sought parameters y0 and φ0L: 

 

,
EI

LP

EI

LP
L- g g

yg;
EI
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L- g gyg

0

 0

3

4

3

0
44042

041

3

0
34032031

=−+

+=+





             (1.4) 

 

where the complex coefficients gij are functions of frequency, as well as 

inertial, dissipative and stiffness SAT parameters. Directly from (1.4), we 

obtain an expression for estimating the transverse displacements and 

angles of rotation in the 0th section: 
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As an example, we give the expression g41 = f (w): 

 

g41 = 65041 + 0.01w2 + 1.5·10-10 w4-1.4·10-20 w6 + 

+ j (5.7 w-2.1 10-7w3-5.7 10-16w5).                                (1.6) 

 

From the found values of the initial parameters, we determine the 

elements of the matrices P using the equations: 

 

Y1=T1G0Y0 ; Y2=R2Y1; Y3=A3R3Y2 ; Y4=M4Y3             (1.7) 

  

For an SAT elastic system, it is enough to determine the first few, and 

most often the first one, natural frequency to know the resonant spindle 

rotation speed and the frequency at which self-oscillations occur. To 

compose the frequency equation, it is necessary to keep in the transfer 

matrix P of the system (1.1) the elements at the intersection of those rows 

whose numbers coincide with the numbers of zero rows of the matrix Y4 

and those columns whose numbers coincide with the numbers of nonzero 

rows of the matrix Y0. Opening the determinant 32414231 gggg − = 0 from 

the elements retained in the matrix P, we find the natural frequency: 

 

1,810-43 w12 - 1,710-31 w10 -2,710-22 w8 -0,610-13 w6 +1,710-5 w4 - 3250 

w2 + 0,2 1011 + j(2,310-36 w11- 2,410-26 w9 -1,410-17 w7-610-9 w5 - 0,2 

w3 - 5,9106 w) = 0. 
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From the frequency equation we determine the real values of the 

angular frequency: w1 = 2800, s-1; w2 = 104930, s-1; w3 = 956860, s-1, which 

corresponds to natural frequencies f1 = 445.86 Hz; f2 = 16709 Hz;  

f3 = 152366 Hz. 

To assess the displacements in the considered SAT sections, it is 

necessary to plot the amplitude diagrams of the initial parameters at the 

first natural frequency. The parameters y0 and φ0L in the zero section at 

frequency f1 take the form: 

 

Y0 = [(2,110-3-2,510-5 j) (-1,910-3-2,510-5j) 0 0]T = 

= [2,110-3 -1,910-3 0 0]T. 

 

The complex data modules result in actual vibration amplitudes. 

Using equations (1.7), we construct an elastic line of transverse 

displacements y(z) and amplitude diagrams of other initial parameters 

(Table 1.1, Figure 1.2). From equation (1.3) we obtain an expression for 

the frequency transfer function W0 in terms of the action from the cutting 

process (at S4 = 0): 
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where 
IIRR ,k,k,kk 2121
 – real and imaginary terms of the transfer function, 

which are functions of frequency. For example, the term 
Rk2

: 

R2k = 42R31Rgg - 42I31Igg - +32R41Rgg ,gg 32I41I  

 

where −)(g IijR  the real and imaginary parts of the term 
Rk2

obtained as a 

result of using the apparatus of transfer matrices and presented similarly to 

expression (1.6). 
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Table 1.1 

Values of initial parameters in various sections 

Node 

number 
0 1 2 3 4 

Zi 0 92 144 292 347 

Yi 2.110-3 1.5910-3 - 1.710-3 - 2.810-3 -5.2510-3 

Li  - 1.910-3 - 1.910-3 - 5.710-2 - 0.14 - 0.18 

EI
LM 2

i  0 -0.08 -0.16 -0.51 -0.64 

EI
LQi

3

 
0 - 0.32 - 1.09 - 0.81 - 0.72 

 

 
Figure 1.2. Elastic calculation lines of the spindle assembly 

 

Figure 1.3 shows the Amplitude-Phase-Frequency Characteristic 

(APFC) of the spindle node, also called the Nyquist Plot (NP). In this case, 

it does not take into account the compliance of the Spindle–Arbor, which 

marked with a dashed line, in which the Arbor – Tool node is modeled by 

the matrix of a weightless section of the rod with the concentrated mass of 

the arbor. 
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Figure 1.3. APFC of the spindle node: 

 without taking into account the compliance of the conical connection:  

spindle – arbor; 

 taking into account the compliance of the conical  

connection: the spindle – arbor 
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Taking into account the compliance of the S–A joint (Figure 1.4) 

using the T1 hinge matrix leads to an increase in the vibration amplitude 

(from 0.025 to 0.083 μm/N) at increased frequencies. The modulus minRe 

also decreases to -0.0439 μm/N. 

The dynamic quality of the SAT system is influenced by the radial 

and rotational stiffness of the S–A, as well as the damping corresponding 

to these stiffnesses [20, 21]. Despite the insignificant mass of the arbor, the 

presence of backlash and dry friction forces leads to the appearance of 

nonlinear phenomena in the conical connection S–A and the need to take 

into account the forces of inelastic resistance and the phenomena of 

damping of oscillations in the general model of the system dynamics under 

consideration. A similar approach is presented in [22], where the dynamic 

subsystem of the spindle group "Clamping fork" of automatic lathes is 

investigated. 

The damping forces (proportional to the displacement velocities) in 

the problem of the dynamics of the SAT system can be taken into account 

using the matrix of the concentrated damping force D1: 

 

D1 = [1 0 0 0; 0 1 0 0; 0 0 1 0; -f1 0 0 1]T, 

 

where f1= j1L1wL3/EI is defined similarly to f3R3. 

Then the hinge matrix *

1T  is represented as the product: 

 


1T = T1·D1=[1 0 0 0; 0 1 0 0; 0 (i- i  ) 1 0; ( 1 - i -f1) 0 0 1]T. 

 

The transfer matrix P and frequency characteristics change similarly. 

In Figure 1.5 and 1.6 show APFC, APC and other characteristics of the 

SAT system taking into account oscillation damping. Analysis of the 

APFC hodograph makes it possible to estimate the magnitude of the 

decrease in the amplitude (from 0.083, μm/N to 0.9·10-3, μm/N) and the 

increase in the stability margin from (1-0.0439) to (1-8.96·10-4). 
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Figure 1.4. Frequency characteristics of the spindle node 

 

With a wide variety of sizes and designs of tooling and cutting tools 

used on milling machines, the number of modifications of the spindle-

support (S-Sp) assembly is limited. Therefore, it is advisable to look for a 
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solution in the form of two independent components: unchanged for a 

given standard size of the S-Sp node; customizable for A-T node. 

This division makes it expedient to construct static and dynamic forms 

of the SAT node [3, 32, 33]. Using the beam formalization, similarly to 

[32], the static form  = f (Lk) was found, which connects the compliance 

of the SAT (Δ) node and the length of the A-T console (Lk): 

 

= 2,1710-5 + 2,3510-7Lk + 3,910-9 2Lk + 2,5410-11 3Lk .    (1.8) 

 

 

 
 

Figure 1.5. APFC of the spindle node (taking into account  

oscillation damping in the hinge) 
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Figure 1.6. Frequency characteristics of the spindle node 

(including damping) 

 

For some fixed version of the A–T design (arbor and boring cutter 

with an overhang Lk = 32 mm), the compliance reduced to the cutting 

position is 3.4·10-5mm/N. The mass mi reduced to the cutting position, the 

damping coefficient hi and the stiffness of the elastic link ci for SAT (i = 

1) and the Table-Workpiece (i = 2) are determined by the following 

expressions: 

 

c1 = 1/ = 2.9104,  N/mm; c2 = 6,54103; ,89.0
2 1

2

1
1 ==

fπ

λc
h N·s/мм; 

h2=0.2N·s/mm; 0.0037
4 2

1
2

1
1 ==

f

c
m


N·s2/mm; m2 = 8.310-4; 

,s 0.0029V/aT 1−== p  
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where   – decrement of oscillation;   – coefficient of proportionality; a 

– nominal thickness of the cut layer, mm;   – chip shrinkage coefficient; 

V – cutting speed, m/min; Tp – time constant of chip formation, s-1. 

 

1.2. Dynamics of an elastic system "Spindle-Arbor-Tool"  

considering inertial components 

High-precision spindle units of metal-cutting machine tools are 

difficult objects for modeling due to the static uncertainty and nonlinearity 

of the mechanical system, the difficulties of a complex mathematical 

description of existing phenomena. The general conceptual model of the 

“Spindle–Arbor–Tool” link includes relatively independent elastic-

deformation and dynamic models [34-37]. 

The basis of the complex SAT mathematical model is the elastic-

deformation model, without which it is impossible to solve any problem of 

calculating or modeling the spindle node. The methods of initial 

parameters [28, 38] and finite elements [28] are most widely used in these 

calculations. When using these methods, the SAT elastic link is considered 

as a rod system with distributed parameters, mounted in elastic supports. 

The problem of elastic-deformation description for the SAT link of 

high-speed machines is a quasi-static problem, which involves the 

inclusion of not only physical but also inertial forces in the equilibrium 

equations, for example, centrifugal forces and gyroscopic moments acting 

on the bearing balls during rotation. In this case, however, a steady-state 

mode of motion is considered when the angular velocities of all elements 

are constant. 

As the results of experiments [35] show, with an increase in the 

rotation frequency as a result of the action of centrifugal forces and 

gyroscopic moments on the balls, the elastic-deformation properties of ball 

bearings change. This is reflected in a decrease in stiffness with constant 

or even increasing axial load. The latter is since the ball bearing begins to 
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work as a three-link mechanism (outer ring–balls–inner ring) on the 

intermediate link of which (balls) centrifugal forces (Fc) and gyroscopic 

moments (Mg) act. 

Considering the inertial forces Fc and Mg are associated with the 

criterion of the critical frequency fc [39]: 

 

,

 sincos1

)/(
1046,4

4
21
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(1.9) 

 

where Fp – preload force, N; 

z – number of rolling elements in the bearing; 

db – ball diameter, mm; 

dav – average bearing diameter, mm; 

r1, r2 – radii of curvature of the raceways of the outer and inner rings, 

mm; 

 
1.5( )g b n bК d C С −=  + , 

 

where the coefficients Cn and Cb are determined either analytically or in a 

tabular way [39]. 

The applicability of quasi-static models, taking into account Fc and 

Mg, is permissible in the case when the rotation frequency of the bearing 

ring exceeds the value of fc calculated by the formula (1.9). In this formula, 

the “+” sign corresponds to the rotating outer ring and the “-” sign to the 

rotating inner ring. It should be noted that with a rotating inner ring fc is 

greater than with a rotating outer ring. 

Let us consider the procedure for calculating the dynamic 

characteristics of the rapidly rotating spindles of the SF68VF4 machine 

and its modifications [12-14]. The design and calculation diagram is shown 

in Figure 1.7, and the initial data in Table 1.2. 
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а б 
 

Figure 1.7. Spindle node schemes: a – constructive; b – calculated 

 

Table 1.2 

Initial data 

l l1 l2 l3 d1 d2 d3 di E, MPa 

467 70 312 85 75 65 60 35 2,2105 

 

The use of the method of initial parameters assumes the division of 

the spindle into N sections, delimited by an abrupt change in the diameters 

(moments of sections inertia Ik) of the concentrated mass (characterized by 

the value of mk and the moment of inertia Ik), support, external concentrated 

load (Fk), etc. 

The spindle shown in Figure 1.7 is divided into three sections. At its 

ends, there are concentrated masses m0 (boring bar) and m3 (gear wheel). 

The front end of the spindle (in the zero section) is affected by disturbances 

from the cutting process – the force F0(t), and the rear end (in section 3) – 

by disturbances from the drive of the main motion F3(t). 

Denoting in the kth section the amplitudes of the transverse 

displacement of the rod, the angle of rotation, the bending moment and the 

transverse force, respectively, through yk, φk, Mk and Qk, we express the 

solution of the free vibrations differential equation of the rod (1.10) 
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Here  – circular frequency of natural vibrations. 

The general integral of equation (1.10) contains four arbitrary 

constants, which are expressed in terms of the initial parameters (1.11). 

The solution to equation (1.10) takes the form [40]: 
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where the functions Ak, Bk, Ck, and Dk are calculated by the formulas 
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where сh, sh – hyperbolic cosine and sine, respectively. 

In matrix form, the parameter vectors at the free ends of the spindle 

without taking into account the external load have the form: 
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The relationship between the initial parameters and their values in a 

certain section n, given through the n-th boundary of the section is 

represented using a chain of matrices; starting from the zero section, they 

reach the left end of the spindle. 

In the zero section, the concentrated force and inertial forces moment 

of the technological equipment (boring arbor) act, the amplitude values of 

which are respectively equal: m0
2I0 and I0

2. 

Let us introduce the concentrated mass matrix G0: 

 

1000071.0

011057.10

0010

0001

100

010

0010

0001

4

0

0
−−

=
−

=




0G ,        (1.15) 

 

where . / ; // 32
00

22
00

2
00 EIlmEIlRmEIlI  ===  

Here m0 – concentrated mass of the arbor; 

R0 – the radius of inertia of the arbor. 

Using the matrix G0, we transform the parameters Y0 when passing 

through the zero section. 

The first section of the spindle has a distributed mass 
1

~m  and a 

stiffness EI1. The relationship between the parameters at its ends is 

determined by the transfer matrix of the U1 section: 
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For the case of considering an elastic spindle system with damping (in 

the presence of inelastic resistance), taking into account dissipative forces, 

the value α1 and λ1 become complex. Value α1 and λ1 should be introduced 

into the transfer matrix U1, expressed by the formulas: 
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where γ – coefficient of inelastic resistance. 

It has been experimentally established that for an angular contact ball 

bearing the coefficient γ = 0.2...0.35. 

Coefficient β depends on the ratio of the lengths of the sections: =l1/l. 

Constants A1, B1, C1, and D1 are calculated by formulas (1.13) taking 

into account the values of λ1 (1.19): 

 

. 107.517.0 ; 1045.0 ; 002.01

; 0012.01 ; 16.038.0 ; 03.01025.1

6
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After substitution of the initial data (Table 1.1), we obtain the transfer 

matrix of the first section U1 in the form: 

 

iiii

iiii

iiii

iiii

0012.01108.71027.331.27.07.02.0

10315.00012.010012.0036.031.27.0

0009.0003.0012.004.00012.01108.71027.3

1054.400015.00009.0003.010315.00012.01

35

4

35

54

−−−−

−−−−

−−−−

−−−−

=

−−

−

−−

−−

1U

  

(1.20) 

 

In support 1, the shearing force changes abruptly by the value of the 

support reaction, for which, in the problem under consideration, not only 

the elastic and dissipative components of the reaction are taken into 

account, but also the centrifugal force Fc and the gyroscopic moment Mg. 

The validity of such an inclusion is associated with the fulfilment of 

the inequality f  fk for the considered finishing methods of boring, which 

are characterized by high speeds. According to the considered version of 

the spindle node, the supports are duplexed from bearings 2-446112 at the 

front and 2-446111 at the rear and are characterized by the following 

design data (Table 1.3). 

 

Table 1.3 

Bearing characteristics 

Type z 
db, 

mm 

dav, 

mm 

r1, 

mm 

r2, 

mm 

D1, 

мм 

D2, 

мм 
Cn Сb 

Fp, 

N 

2-

446111 

18 10.3 72.5 7.0 7.0 62.0 82.0 3.2 

10-4 

3.3 

10-4 

340 

2-

446112 

18 11.1 77.5 7.5 7.5 68.0 88.0 3.2 

10-4 

3.3 

10-4 

340 

 

The calculations performed by the method [12–14] showed that at the 

rotation frequency of the inner ring f ≥ 1100 rpm, it is necessary to take 

into account the factors Fc and Mg (1.9). 

The step force when passing through the support is taken into account 

by multiplying the parameter vector Y1 by the support matrix R1. 



 
32 

100)5.36101.1(

010013.00

0010

0001

100)(

010

0010

0001

4
11 1

1

if љ

‹

−−

−
=

+−−

−
=



1R
   (1.21) 

 

where 1 = c1l
3/EI1 – coefficient reflecting the elastic properties of the 

support and depending on the value of the stiffness coefficient c1; 

f1 = ih1l3/EI – coefficient reflecting the properties of energy 

dissipation in the support and depending on the damping coefficient h1; 

c1 = Fc1l
3/EI – coefficient reflecting the action of centrifugal forces 

Fc; 

g1 = Мg1 l
2/EI – coefficient of reflecting the action of the gyroscopic 

effect, expressed through the gyroscopic moment Mg. 

The value of these inertial loads can be calculated using the formulas 

[39]: 

 

;
2

1 2
tavbc dmF =                               (1.22) 

 

,sin  tbbg IM =                            (1.23) 

where mb, Ib – mass and moment of inertia of the ball; 

tb   ,  – relative and drift angular speed of the ball [12–14]. 

When the inner ring is rotating, the gyroscopic moment is directed so 

that it tends to move the rings apart (the “-” sign in formula (1.23)). 

The drift rotational motion of the ball t  is characterized by the 

rotation of the movable coordinate system centred in the center of the ball 

around the X-axis of the stationary system, which coincides with the axis 

of rotation of the rings. The relative motion is characterized by the rotation 

of the ball in the moving coordinate system and is determined by the vector 

of the relative angular velocity b . 
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Using the hypothesis of the driving ring [39] (a ring concerning which 

there is no spinning of the ball), we write the expression for 
t  and 

b  

with a driving outer ring: 
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After substitution of the initial data (Table 1.2 and Table 1.3), we 

obtain the numerical value of the matrix R1 (1.21). 

The second section of the spindle has a distributed mass m~ and 

stiffness EI2 = EI. The relationship between the parameters at its ends is 

determined by the transfer matrix U2: 

 

iiii

iiii

iiii

iiii

6.195.09.947.097.4474.85.14196.2

21.066.06.195.009.1052.297.4474.8
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03.0046.008.019.021.066.06.195.0

−−−−−−
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=2U   (1.26) 

 

In support 2, the shear force changes abruptly, which is taken into 

account by multiplying the parameter vector by the support matrix R2: 
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Similarly to matrix R1, matrix R2 takes into account the elastic and 

dissipative components of the reaction 2 and f2, as well as the centrifugal 

force Fc and the gyroscopic moment Mg (1.27). 

Similarly, the transition to the third section is carried out with the 

following value of the components: 
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The transition matrix of the third section takes the form: 

 

iiii

iiii

iiii

iiii

 037.01 84.0009.0 28.78.2 06.8182.23

 0014.018.0 037.01 45.013.0 28.718.2

 009.0028.0 1.031.0 037.01 84.0009.0

 00050017.0 009.0028.0 0014.018.0 037.01

−−−−−

−−−−

−−−−−

−−−−

=3U        (1.28) 

 

Finally, similarly to the previous one, the matrix of the concentrated 

mass G3 is introduced, which reflects the influence of the inertial forces of 

the gear wheel on the deformation pattern: 

 

3 = j32l/EI = 0.0021; 

V3 = m32l3/EI = 0.14. 

 

Matrix G3 is presented as 
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The parameters in the third section Y3, taking into account the external 

load, depending on the initial parameters Y0 under the following 

relationship: 

 

Y3 = P (Y0 - S0) - S3,                           (1.30) 

 

where P is the transition matrix, which is the product: 

 

П = G3U3R2U2R1U1G0;                 (1.31) 

 

S0 and S3 are columns matrix of external load: 
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The definition of the transfer matrix P is reduced to multiplying 7 

matrices of size 4×4. Usually, at the ends of the spindle, two from the four 

parameters in the column matrices Y0 and Y3 are equal to zero, which 

makes it possible to significantly rationalize the computational work by 

storing only a part of the elements in the transfer matrix. Expression (1.30) 

in the expanded form is presented below 
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In the matrix P of 16 elements, only six are preserved, which makes 

it possible to distinguish two linear equations for the sought variables Y0 

and φ0l: 
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where the complex coefficients aij are functions of the frequency , as well 

as the inertial, dissipative, stiffness and geometric parameters of the SAT 

link. For operations with complex coefficients and matrices, the MATLAB 

software environment was used. The functions real (z), imag (z), abs (z), 

and angle (z) return real (R (z)), imaginary (Im (z)), modulus 

2 2( ( ) ( )e mR z I z+ ), and complex z argument 
( )

( )
( )

m

e

I z
arctg

R z
. 

Using the initial data (see Table 1.2 and Table 1.3), we obtain a vector 

of initial parameters: 
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The modulus of the vector of initial parameters 0Y  found using 

MATLAB leads to real amplitudes of oscillations corresponding to 

harmonic disturbances. 
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In the zero section, the vector Y0 is transformed using the matrix G0: 
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Complex elements of matrices Yi are determined in a similar way 

using the following equations: 

 

Y1 = U1G0Y0 - S0;          Y2 = U2R1Y1;          Y3 = G3U3R2Y2 - S3. 

 

Table 1.4 summarizes the actual values of the parameters Yi and φil. 
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Table 1.4 

Displacement parameters 

Node 

number 
0 1 2 3 

X, mm 0 70 382 467 

Yi, mm -0.0098 -0.0087 0.0011 -0.0049 

il 0.0026 -0.0026 -0.0056 -0.0062 

 

In Figure 1.8 shows the graphs of changes in the parameters Yi and 

il. 

 

 

Figure 1.8. Calculation lines of spindle deflection 

 

1.3. The dynamics of the cutting process 

One of the technological operations carried out on machines of the 

SF68PF3(F4) type is boring holes in parts of various nomenclature. 

Adjustment for boring operation using the above-considered version of the 

spindle assembly (the cantilever of which is considered a boring bar), 

shown in Figure 1.9. 
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Figure 1.9. Fragment of adjustment for boring operation 

 

Table 1.5 presents the initial data characterizing the cutting pattern 

when boring. 

 

Table 1.5 

Initial data 

Processed 

Material 

Cutting 

tool 
Cutting mode elements 

Steel 45 

GOST 

1050-74 

Cutter 

2142-0353 

Т15К6 

GOST 

9795-84 

d, 

mm 

fr, 

mm/rev 

fm, 

mm/min 

V, 

m/min 
n, min-1 

0,4 0,1 80 75 800 

 

The transfer function of the cutting process is described by the well-

known expression [Kudinov]: 

 

,
11 2222 +

−
+

=




 p

pp

p

p

p
T

Tk
i

T

k
W

 

1,4 b;p bk =  
, V

a
Tp


= , 

 

where kр – cutting coefficient, N/mm; 

Tp – time constant of chip formation, s; 

ξ – coefficient of shrinkage of the chips; 
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a, b – thickness and width of chips, mm; 

α – coefficient of proportionality, usually for stationary processing 

methods, α = 4.5; 

σb – temporary resistance of the processed material, MPa. 

In Figure 1.10 shows the frequency characteristics of the cutting 

process, and Figure 1.11 frequency hodograph of the cutting process, as 

the inertial link of the first order, obtained using the MATLAB software 

environment. 

 

 
Figure 1.10. Frequency characteristics of the cutting process 
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Figure 1.11. APFC of the cutting process 

 

1.4. Dynamics of closed-loop subsystems 

Vibration stability of the closed-loop elastic system Spindle-Arbor-

Tool-Cutting Process (SATCP) can be estimated by the open-loop system 

SATCP. In Figure 1.12 shows the APFC hodographs of the elastic link Wel 

of the cutting process (Wр), open Wos and closed Wcs systems, and in Figure 

1.13 hodograph APFC of the closed elastic system SATCP on an enlarged 

scale. 

Similarly, taking into account the experimentally determined balance 

of elastic links compliance for the machine tool, the parameters of the 

dynamics model of the "Table-Workpiece" link were calculated: 

 

m2 = 8.65 (Ns2/mm); h2 = 38.51 (Ns/mm); c2 = 0.93 105 (N/mm). 
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Figure 1.12. APFC of a dynamic system "Spindle-Arbor-Tool-Cutting Process" 

 

 
Figure 1.13. APFC of a closed-loop system "Spindle-Arbor-Tool-Cutting 

Process" 
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Based on expression (1.6), a dependence to determine the transfer 

function in a complex-frequency form (calculations in Appendix 2) was 

obtained. With the help of the MATLAB software environment, the 

software for analyzing the dynamics of the functioning of a technological 

system (TS) based on the SF68VF4 machine was developed. Figure 1.14 

and Figure 1.15 show the frequency characteristics of the elastic system, 

which includes links: “Spindle-Arbor-Tool” + “Cutting Process” + “Table-

Workpiece” ("SAT + CP + TW") and its amplitude phase-frequency 

characteristic. 

Analysis of the frequency hodographs of the elastic links of the 

investigated TS shows that all of them are vibrostability, and with the 

addition of additional elastic links to the contour, the critical circular 

frequency of vibrations tends to decrease jn = 119.56 s-1 for the "Spindle-

Cantilever" link to jn = 106 s-1 for the "SAT + CP + TW" system. 

 

 
Figure 1.14. Frequency characteristics of the elastic system "Spindle-Arbor-

Tool" –"Cutting Process" – "Table-Workpiece" 
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Figure 1.15. APFC of the closed-loop system "Spindle-Arbor-Tool" – "Cutting 

process" – "Table-Workpiece" 

 

1.5. Sustainability of work processes machines based  

on single and two-parameter D-partitions 

To research the stability of the technological system, D-partitions 

method was used [30, 41, 42], based on the analysis of the number of roots 

of the characteristic equation lying in the right half-plane of the system 

parameter space. 

The characteristic polynomial of the transfer function denominator, 

which determines stability, can be written as: 

 

Kp [A(p) + B(p)] + A(p) B(p) [Tp p +1] = 0          (1.34) 

 

To determine the numerical values of the one-parameter D-partition 

parameters on the Kp plane, we use a transformation of the form: 
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( ) ( )( )
( ) ( )

1
.

p
p

A p B p T p
K

A p B p

 +
= −

+
                      (1.35) 

 

After passing to the Fourier transform p = i  and separating the real 

and imaginary parts of expression (1.35), an algorithm is built and a 

program is written in the MATLAB environment. 

To solve the problem, let us construct (i.e. determine the values of Kp 

at which the given system is stable) the boundary of the D-partition in the 

plane of the complex parameter Kp; in this case, only the partition of the 

real axis will be of interest, i.e. actual values of Kp. 

From (1.35) it follows that the boundary of the D-partition 

corresponds to the equation: 
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(1.36) 

 

where 𝐿1 = 𝑐1 − 𝑚1 
2;    𝐿1 = 𝑐2 − 𝑚2 

2;  

𝐿3 = (𝑐1 + 𝑐2) − (𝑚1 + 𝑚2)2;    𝐿4 = (ℎ1 + ℎ2) . 

 

Here m1, h1, c1 and m2, h2, c2 are the parameters of the dynamic models 

of the elastic links "Spindle-Cantilever" and "Table-Workpiece", 

respectively. 

The boundaries of the D-partition according to (1.36) are shown in 

Figure 1.16. 

Two variants of adjustments were experimentally researched with a 

cantilever length of 1k = 500 mm (the limiting capabilities of the SF68PF4 

machine for programmed movement along the Z-axis) and 1k = 300 mm. 

With an increase in the cantilever length, the cutting rigidity decreases 

from Kp = 4466 N/mm (at f = 181.4 Hz) to Kp = 2008 N/mm and f = 181.75 
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Hz. A contender for the stability region is the region S, to which the shading 

of the D-partition is directed. It can be shown that this area is not only a 

contender but also the area of sustainability itself. Indeed point (0,0), i.e. 

Kp = 0, lying in the region S, belongs to the stability region D(0), because 

at Kp = 0 the characteristic equation (3.26) turns into the equation 

 

7.47 109·р5+3 105·р4 +0.02·р3 + 33.38·р2 + 8624·р +8.64·106 = 0, 

all five roots (p1 = -3.59; p2,3 = -0.13 + 0.77i; p4,5 = -0.074 ± 0.72i), which 

lie in the left half-plane of the roots. Thus, the system is stable if the actual 

values of Кр change within the limits determined by the segment 0=  ... 

1142=  (s-1). 

 

 
Figure 1.16. Parametric D-partition in the plane of the parameter Кр 

 

The limiting value of rigidity 𝐾𝑝
𝑙𝑖𝑚= 2008 N/mm will correspond to 

the optimal value of the depth of cut: 
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𝑑 =
𝐾𝑝

𝑙𝑖𝑚

1.4∙𝜉𝜎𝐵𝑠𝑖𝑛600 = 1.003 𝑚𝑚. 

The influence of two parameters Kp(d) and Tp(f) on the stability of the 

system can be effectively solved if these parameters enter linearly into the 

characteristic equation: 

 

( ) ( ) ( ) 0=++ pRpQTpMK pp  

where  ( ) ( ) ( )pBpApM += ;  ( ) ( ) ( )pBpAppQ = ;  

( ) ( ) ( )pBpApR = . 

 

The boundary of the D-partition in the plane Kp and Tp is determined 

by the equations: 

 

( ) ( ) ( ) ;RQTMK pp 0111 =++                      (1.37) 

( ) ( ) ( ) ;0222 =++ RQTMK pp                     (1.38) 

( ) ( ) ( ) 21 iMMiM += ; 

( ) ( ) ( ) 21 iQQiQ += ; 

( ) ( ) ( ) 21 iRRiR += . 

 

Solving the system of equations (1.37, 1.38) to Kp and Tp, we obtain 

 

= /1pK ;  = /2pT ,                        (1.39) 

where                                    
( ) ( )
( ) ( )



22

11

QM

QM
=                               (1.40) 
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( ) ( )
( ) ( )



22

11

2
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RM

−

−
=                             (1.42) 

When A ≠ 0 for each value of   according to the equations (1.39 ... 

1.42) it is possible to determine the values of Kp and Tp and, thus, in the 

plane Kp and Tp, to construct the boundary of the D-partition. 

For the case of constructing a two-parameter D-partition in the 

problem of analyzing the stability of the SF68PF4 machine and finding the 

optimal cutting conditions {d0, f0} during boring, the above values take the 

values: 

 

( ) ( )  2
2

13 iLLLiM +−= ; 

( ) ( ) ( ) 8
3

6
5

4
2

7
4

5 LLLiLLiQ +−+−= ; 

( ) ( ) ( )3
578

2
6

4
4  LLiLLLiR −++−= , 

where 211 mmL += ;   212 hhL += ; 213 CCL += ; 

214 mmL = ; 21215 mhhmL += ; 

2112216 mChhCmL ++= ;  21217 hCChL += ;  218 CCL =  

 

Then the values of the main determinant Δ are equal to: 

 

 12
3

11
5

10
7

9 LLLL +++=  

 

where 419 LLL −= ;  52614310 LLLLLLL −+= ; 

81637211 LLLLLLL −−= ;  8312 LLL = . 

 

The values of the partial determinants Δ1 and Δ2 are equal: 
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,8
3

16
5

15
7

141  LLLL −++=  

 

where 
2
56414 2 LLLL −= ; 

2
6847515 22 LLLLLL −−= ; 

2
76816 2 LLLL −= . 

 

 19
3

18
5

172 LLL ++= , 

where 512417 LLLLL −= ; 26537118 LLLLLLL −+= ;   

732819 LLLLL −= . 

Using equations (1.39 ... 1.42) we find expressions for Kp and Tp: 
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The boundary of a two-parameter D-partition is determined by 

equations (1.43) and (1.44). To facilitate construction, Figure 1.17, a; b 

show the curves Kp( ) and Tp( ) with a critical frequency w = 753 (s-1). 

Using these curves, the boundary of the D-partition was built (Figure 

1.18). It is shaded (hatched) according to the following rules: on the left, 

when walking in the direction of increasing  , if the main determinant is 

Δ > 0, and on the right, if Δ < 0. 

Since the boundary of the D-partition for positive and negative values 

of   coincides (the quantities, Kp and Tp are even functions of  , it is 

hatched twice from the same side. The singular lines [31] corresponding to 

the values:   = 0 and   = ∞ hatched singly so that near the point of the 



 
50 

conjugation of a straight line and a curve, the shaded and unshaded sides 

of the straight line and the curve were directed towards each other. 

 
Figure 1.17. Cutting coefficient graphs Kp and characteristics 

the time constant of chip formation Tp 

 

The special straight line is obtained by equating to zero the coefficient 

of the characteristic equation at the leading term. 

The stability region is formed by the positive part of the singular line 

and the D-decomposition curve. 

The extremum points of the D-partition border: Kp = 865, N/mm; Tp 

= 0.0013, s can be associated with a pair of optimal cutting modes f0 and 

d0, according to the criterion of technological system stability based on the 

SF68VF4 machine. These values are determined by the formulas for the 

cutting process dynamics: 

 

;/ 21,0
60sin2.2604

10750013.0 3

revmmfo =



=  

 



 
51 

. 43.0
60sin7502.24.1

865
mmdo =


=  

 

 
Figure 1.18. Two-parameter D-partition in the plane "Kp – Tp" 

 

1.6. System stability "Spindle-Arbor-Tool" by  
"D - partitions method" 

The tasks of assessing the stability of the SAT unit are included in the 

task of analyzing the technological system (TS) of a milling machine, the 

main power contour of which is the shaping units SAT and the Table–

Workpiece with a closure on the side of the cutting process by force P0. 

The transfer function Wcs(p) for such a closed-loop system is [1]: 
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where .41)( 22
2

211
2

1 bςσ,; Kcphpm; B(p)cphpmpA Bp ++=++=  

Here Kp – specific cutting force, N/mm; 
B  – tensile strength of the 

processed material, MPa; b – width of the cut layer, mm. 

To assess the stability of a technological system based on a milling 

machine, taking into account the SAT system, we use the “D-partitions” 

method [41, 42], which consists in analyzing the number of roots of the 

characteristic equation (1.45) lying in the right half-plane of the studied 

parameters space. The characteristic polynomial of the transfer function 

denominator (1.45), which determines the stability, allows us to find the 

values of the parameters D-partition into Kp planes: 

 

.
)()(

1)()()(
 

pBpA

pTpBpA
K

p

p
+

+
−=                  (1.46) 

 

The program is developed in MATLAB environment. As a result of 

the numerical analysis, the stability regions were researched and the D 

curves were constructed – the partitions in the parameter Kp plane (Figure 

1.19), where the shaded area denotes the region of the candidate for 

stability s. Since the point is (0,0), i.e. Kp = 0 belongs to the stability region 

D(0), then this region is the stability region itself; in this case, only the 

division of the real axis – real values Kp will be of interest. From expression 

(1.46) it follows that the boundary D-partition corresponds to the equation: 

 

1.3610-6 p5+ 6.510-4 p4 + 1.79p3 + (0.057 Kp + 715.8) p2+  

+(3.86× ×Kp + 591205) p + (35540 Kp + 1.9108) = 0. 
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Figure 1.19. One-parameter D–partition 

 

For Kp = 0; m. (0,0) the polynomial of the 5th degree turns into the 

equation: 

 

1.3610-6 p5+ 6.510-4 p4 + 1.79p3 + 715.8p2+ 591205p + 1.9108 = 0, 

 

all five roots of which (p1,2 = -0.9±8.1j; p3,4 = -0.59± 7.9j; p5 = -3.45) lie in 

the left half-plane of the roots. The resulting curves in the complex plane 

divide the space into three regions D(0), D(1) and D(2) and the transition 

through the boundary D-partition corresponds to the transition of the roots 

of the equation through the imaginary axis. 

Analysis of the stability region in the Kp parameter plane during 

boring with a cutter (Lk = 32 mm) shows that the region is limited by the 

maximum value Kp = 3823 N/mm at f = 449 Hz. The corresponding 

limiting value of the chip width blim = 1.8 mm (for structural steel  = 2.2; 
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B  = 750 MPa). With an increase in the length of the cantilever, the Kp 

value sharply decreases – at Lk = 90 mm, the stability region is limited to 

Kp = 1526 N/mm, the frequency value   = 2820 s-1 and the limiting width 

blim = 0.7 mm.  

Analysis of the stability of the SAT dynamic system allows designers 

to determine the ultimate length without vibration processing Lk when 

designing adjustments and assessing the technological capabilities of 

machine tools. For this purpose, we express the dynamic parameters: 

1 1 1,   km h , c f(L )= , using the static form (1.8). Let us substitute the obtained 

expressions into the characteristic polynomial of the transfer function 

denominator (1.45) and obtain a dependence connecting 
'

kL  with the 

dynamic parameters of the system: 

 
' 7 9 2 11 3 '2.35 10  3.9 10 2.54 10   ( );k k k k kL L L L L− − −=  +  +    

2 2

2 2
' 1 2 2 1

2 2 2 2

(2734-0.004 ) 0.4 (2734-0.004 ) 0.4
j ,

(2734-0.004 ) 0.16 (2734-0.004 ) 0.16
k

L L L L
L

 +   − 
= − − 

 +   + 
 

 

where 12 4 6 2 13 5 9 3

1 23.6 10  4.3 10  1.04;  9 10  9.2 10  0.003   ).-L L− − −=   −   + =   +   +   

In Figure 1.20 is a graph showing the dependence of the magnitude Lk 

on the frequency. 

For the critical frequency   = 2820, s-1, an equation can be written to 

determine the limiting value :lim
kL

 
 

 102.54103.9 102.35 311297
kkk LLL −−− ++  = 1.09·10-4, 

having one real root 
lim
kL  = 111 mm. Specific cutting force Kp = 1194, 

N/mm characterizes the limiting possibilities for rigidity of the considered 

SAT node. 
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Figure 1.20. D - partition of parameter 


kl  

 

Based on the research carried out, an assessment of the dynamic 

quality of the SAT system of the milling machine is given. For this, using 

the method of initial parameters, an elastic-deformation model of the 

system was developed, and also the diagrams of the amplitudes of the 

initial parameters were constructed. Formed static and dynamic forms of 

the system under consideration. The influence of the arbor link – the tool 

is modeled by the matrix of the elastic-friction joint, taking into account 

the oscillation damping at the joint boundary. 

Using the apparatus D-partitions, the influence of the cantilever part 

of the node (Lk) on the stability of the system was estimated, the stability 

domains D(0) in the complex plane were constructed, and quantitative 

estimates of the limiting rigidity of the cutting process Kp and the length of 

the cantilever 
lim
kL  of the SAT dynamic system for milling machine were 

given. 



 

 
56 

 

 

2. RESEARCH OF THE CARRYING SYSTEMS DYNAMIC 

FOR MILLING-DRILLING-BORING MACHINES TYPE 

 

Considering the design of the machine tool as a closed-loop dynamic 

system [1, 2, 3], most often they resort to schematizations obtained in the 

works of V.A. Kudinov [1]. 

In the general case, the equivalent elastic system of a machine tool 

(EESMT) of a Technological Complex (TC) of a milling-drilling-boring 

machine can be represented as a linear system with many degrees of 

freedom. The system includes several concentrated and distributed 

elements with corresponding inertial, elastic and dissipative 

characteristics. 

 

2.1. Experimental research of the machine technological complex 

During preliminary experiments on the basic model TC of SF68VF4 

[9, 29, 43], designed and manufactured at the Lugansk machine-tool plant, 

the following were obtained: displacement of the tool and the workpiece 

mounted on the rotary table under the action of the weight of the nodes and 

the forces Px,y,z. At the same time, the most unfavorable carrier system 

layout of the nodes for the machine was considered (Figure 2.1) – the 

spindle is in the most extreme position; table with the workpiece in the 

lowest position. 

To assess the influence of TC parameters on the level of dynamic 

compliance, it is necessary to construct vibration modes at those natural 

frequencies that are characterized by a relatively high level of vibrations of 

the tool and workpiece [44–47]. Analysis of the experimental amplitude-
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frequency characteristics showed that low-frequency oscillations fi (Hz) 

are of greatest interest: 

fi = {16.5; 20.2; 24.6; 28.6; 44.2}. 

 

 
Scheme I 

 

 
Scheme II 

 

Figure 2.1. Layout of machine units 
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At the above frequencies, the vibration modes of the carrier system 

were calculated, the numerical values of which for the tool and workpiece 

are given in Table 2.1. 

 

Table 2.1 

Nodal displacements 

Node direction 
Natural frequency, Гц 

16.5 20.2 24.6 28.6 40.9 44.2 

C
u
tt

in
g
 

to
o

l 

X -0,02 -0,021 0,032 0,0063 -0,0015 0,04 

Z -0,013 -0,018 -0,016 0,028 0,0034 0,02 

Y -0,012 -0,027 -0,03 -0,0036 -0,001 0,012 

Fx -0,2610-5 0,4810-5 0,1110-4 -0,3410-4 -0,210-6 -0,2210-4 

Fz -0,1410-4 -0,3510-4 0,5410-4 -0,5310-5 -0,3210-6 0,2710-4 

Fy 0,2110-4 0,1310-4 0,7910-6 0,1910-4 -0,6110-7 -0,7210-4 

W
o

rk
p

ie
ce

 

X 0,17 -0,031 -0,035 0,5710-3 -0,1410-4 0,047 

Z 0,065 -0,1 -0,04 -0,021 -0,6310-4 0,046 

Y 0,037 -0,11 -0,034 0,036 -0,110-3 0,053 

Fx -0,6410-5 0,7810-4 0,2310-4 0,1510-4 -0,2310-6 -0,9610-4 

Fz -0,110-3 -0,1210-3 0,4210-4 -0,5610-4 -0,210-6 -0,1810-4 

Fy 0,1410-3 -0,8910-4 0,4110-4 -0,5110-4 -0,6510-6 -0,2910-4 

 

This table shows the numerical values of linear displacements along 

the X, Y, Z axes (mm) and angular displacements relative to the Fx, Fy, Fz 

axes (μm/mm). 

Figure 2.2 graphically shows vibration modes at frequencies of 24.6 

and 28.6 Hz, characterized by intense displacements of the spindle head in 

the YOZ plane and the table with the workpiece in the XOZ plane. In this 

case, elastic deformations were recorded with the most unfavorable 

arrangement of machine nodes (Figure 2.1, Scheme 1) and the following 

loading option: Pz1 = -1000 N; Py1 = Px1 = 1000 N (attached at the end of 

the spindle). 
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Figure 2.2. Machine vibration modes 

 

The graphic representation of the deformations of the elastic links of 

the TC allows you to more clearly navigate the first stage of calculations 

and, therefore, improve the quality of the final calculations. 

As shown by the results of the experimental research, the modules 

(amplitude-frequency characteristics) of the mutual characteristics (Wyх, 

Wуz, Wzх, Wхх) turned out to be significantly smaller in comparison with the 

modules of the main characteristics Wхх and Wуу in the entire frequency 

range (10 ... 400 Hz). This allows us to consider the vibrations of the 

machine tool along different coordinate axes to be weakly coupled and to 
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consider its spatial elastic system, consisting of two independent 

subsystems in the plane Y0Z and X0Z. 

 

2.2. Classification of the main machine nodes 

Based on the displacements picture of the TC elastic system points, 

the classification of its main nodes with division into arrays and rods 

(elastic beams) is carried out [48–50]. The arrays include a tool, a rotary 

table, a workpiece and drives of feed and main movement (Table 2.2). As 

you know, arrays are understood as those elements of the machine, the 

proper deformations of which can be neglected in comparison with the 

contact deformations at their joints with other elements, which gives reason 

to represent them in the form of concentrated masses (Figure 2.3). 

 

 
Figure 2.3. Design diagram of the machine 
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Table 2.2 

Classification of main nodes 

Designation 

(machine part number) 
Machine node 

Lumped masses (arrays) 

1 Tool 

9 Main drive 

14 Feed drive (Y-axis) 

16 Rotary table 

17 Workpiece 

Rods 

2-3-4 Spindle assembly 

5-6-7-8 Spindle head 

10-11-12 Column 

14-13-15 Carriage 

Joints 

2-5, 3-6 Spindle assembly supports 

7-9, 8-9 Engine mounts 

7-10 Spindle head – column 

11-13 Column – carriage 

14-16 Carriage – vertical table 

16-17 Rotary table – workpiece 

Support 

12-0 Foundation – base 

 

At the junction "rotary table-part", only the angular compliance in the YOZ and YOX 

planes will be taken into account. 
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The analysis of vibration modes made it possible to neglect the 

compliance of some joints, which significantly reduced the complexity of 

the preparatory stage of the calculation. For example, the compliance of 

the "column-carriage" and " carriage-table vertical" joints (Figure 2.3) 

should be considered only in the direction of feed movement (X-axis) and 

only during milling when the clamping mechanisms of these machines are 

turned off [51–53]. In other cases, these joints can be considered absolutely 

rigid. Links between points 7-9; 8-9 can be thought of as between points 

belonging to the same array and considered as a rigid constraint. The same 

applies to the pair 7-10. At the junction "rotary table - part", only the 

angular compliance in the YOZ and YOX planes will be taken into 

account. 

The spindle of the machine is shown on the design diagram in the form 

of a weightless elastic beam with three concentrated masses on two elastic 

damping supports. The tool itself, if its deformations can be neglected 

(rigid boring bar, cutter), is represented as an array. 

Thus, the real elastic system of the machine tool is replaced by a 

design diagram, i.e. a system with a finite number of freedom degrees in 

the form of 5 concentrated masses, connected by elastic and dissipative 

(dissipating vibration energy) elements, usually with linear characteristics. 

Each mass in the general case can have six degrees of freedom and its 

motion must be described by six second-order differential equations. 

Reducing the labor intensity of the exact calculation of the above 

system is associated with the allocation of the main nodes that have the 

greatest impact on the level of dynamic quality indicators. The specific 

version of the selection depends, in turn, on the assigned task [54, 55]. So 

in the tasks of analyzing and assessing the accuracy of TC in the process 

of functioning (shaping the surfaces of parts), the spindle assembly is of 

decisive importance [44]. This is confirmed by the above researches using 

spectral analysis, which showed that in the circular patterns of the surface 

of the workpiece, only frequencies are present that are characteristic of the 
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vibration of the spindle assembly, i.e. the frequency spectrum of the spindle 

axis trajectory is copied entirely onto the part. 

At the same time, another forming unit of the TC based on SF68F4 in 

the general picture of the deformation state significantly affects the quality 

of the products: 

- at a vibration frequency f = 16.5 Hz, there are intense vibrations of 

the rotary table and the carriage in the direction of the X and Y axes, which 

leads to torsion of the carriage housing and deformation at the column-

carriage and carriage-table joints; 

- at a frequency of f = 20.2 Hz, rocking oscillations of the carriage 

with the table relative to the column in the YOZ plane occur, which are 

determined by the angular stiffness of the joint of the column slideways 

with the carriage in the YOZ plane with the total mass of the table 

workpiece and the carriage; 

- at a frequency of f = 28.6 Hz, there are also intense vibrations of the 

spindle head and the rotary table in the YOZ plane (Figure 2.7). 

Although the elastic systems of the SF68F4 CNC machines type are a 

multi-mass connected system, the violation of the shape and quality of the 

machined surface depends, first of all, on such main and shaping units as 

the "Spindle-Tool" (S-T) and "Table-Workpiece" (T-W). Hence, we can 

conclude that the considered elastic system with a satisfactory 

approximation can be considered as two-mass. This is also confirmed by 

the constancy of the elastic moment amplitude at the lowest vibration 

mode. 

The relative smallness of the vibration amplitudes (Figure 2.6), the 

presence of the elastic system preload, created by the cutting forces and the 

weight of its element, and the applicability of the superposition principle 

(in the range of acting disturbances) allow us to consider this system to be 

linear, described by a system of ordinary second-order differential 

equations. 
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2.3. Design schemes and models of a two-mass machine system 

For the machine of the drilling-milling-boring group of type SF68F4, 

the design diagram of the equivalent elastic system (Figure 2.4) includes 

two concentrated masses m1 (subsystem "S-T") and m2 (subsystem "T-W"), 

having linear characteristics of stiffness К1 and К2 and damping h1 and h2. 

Mutual influence of masses m1 and m2 occurs during cutting with a cutting 

rigidity coefficient Kp [65]. With this formulation of the problem, the tool 

and the workpiece are connected by the cutting process. 

 

 
 

Figure 2.4. Design diagram of an equivalent elastic system: m1 – the 

concentrated mass of the S-T subsystem; m2 – the concentrated mass of the T-W 

subsystem; h1 and h2 – damping factors 

 

The mutual influence of masses m1 and m2 occurs during cutting with 

a cutting stiffness coefficient k. Such a two-mass system can be described 

by a system of second-order differential equations with practically constant 

coefficients, i.e. vibrating links: 

 

𝑚1𝑦̈1 + ℎ1𝑦̇1 + 𝑘1𝑦1 − 𝑘(𝑦2 − 𝑦1) = 0;

𝑚2𝑦̈2 + ℎ2𝑦̇2 + 𝑘2𝑦2 − 𝑘(𝑦2 − 𝑦1) =  𝐹0,
                  (2.1) 

 

where y1 – displacement of the S-T subsystem; 

y2 – displacement of T-W subsystem; 

F0 – the disturbing force arising from the imbalance of the spindle and the 

arbor, as well as the unevenness of the allowance. 
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To consider the dynamic properties, it is necessary to take into account 

the dynamic characteristics of the cutting process [1, 56, 57]; as an inertial 

link of the first order: 

 

𝑇𝑝𝐹̇𝑝 + 𝐹𝑝 = 𝐾𝑝𝑦,                                   (2.2) 

 

where Kp = Ks·b = (1.3 ... 1.5) σB·b – cutting stiffness; 

Кs – specific cutting force, N/mm; 

b – chip width, mm; 

ξ – shrinkage factor; 

σB – ultimate tensile strength of the processed material, MPa; 

The time constant of chip formation Tp is determined by the 

dependence: 

Tp = α·a·ξ/V, 

 

where α – proportionality coefficient; 

a – chip thickness, mm; 

V – speed, m/s; 

Fр – cutting force (reduced to the normal coordinate), N. 

 

Taking into account the expression for the averaged stiffness S-T and 

equation (2.1) due to expression (2.2), it is possible to construct a system 

of integral-differential equations 

 

𝑚1𝑦̈1 + ℎ1𝑦̇1 + 𝑘1𝑦1 − 𝐹𝑝 = 0;

𝑚2𝑦̈2 + ℎ2𝑦̇2 + 𝑘2𝑦2 + 𝐹𝑝 =  𝐹0;

𝑇𝑝𝐹̇𝑝 + 𝐹𝑝 = 𝐾𝑠(𝑦2 − 𝑦1).

                      (2.3 ) 

 

Representation (2.3) is correct for the case when the velocities of the 

longitudinal feeds are relatively small in comparison with the values of the 

S-T transverse vibrations. 
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In operator form (using the Laplace transform: p = d/dt), system (2.3) 

can be represented as: 

 

(𝑚1𝑝2 + ℎ1𝑝 + 𝑘1)𝑦1 −
𝐾𝑠

𝑇𝑝𝑝+1
(𝑦2 − 𝑦1) = 0; 

(𝑚2𝑝2 + ℎ2𝑝 + 𝑘2)𝑦2 −
𝐾𝑠

𝑇𝑝𝑝+1
(𝑦2 − 𝑦1) = 𝐹0(𝑝).

       (2.4) 

 

After transformations, we obtain the transfer function W(p) for the 

disturbing action F0(p): 

 

𝑊(𝑝) =
𝑍(𝑝)

𝐹0(𝑝)
=

𝐴(𝑝)(𝑇𝑝𝑝+1)

𝐾𝑠[𝐴(𝑝)+𝐵(𝑝)]+(𝑇𝑝𝑝+1)𝐴(𝑝)𝐵(𝑝)
,              (2.5) 

 

where Z(p) – output parameter of the system: 

 

𝑍(𝑝) = 𝑦2(𝑝) − 𝑦1(𝑝) 

𝐴(𝑝) = 𝑚1𝑝2 + ℎ1𝑝 + 𝑘1;

𝐵(𝑝) = 𝑚2𝑝2 + ℎ2𝑝 + 𝑘2.
 

 

The relative displacement of the masses "S-T" and "T-W" is an 

algebraic sum: Z = y2-y1 and the movement of the part y2 includes two 

components: 

y2' – caused by the action of the disturbing force F0; 

y2'' – caused by the action of the elastic link "S-T". 

Based on the above interpretation, the structural diagram of the TC 

can be presented in the form: 
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Figure 2.5. Block diagram of the machine technological complex 

 

In Figure 2.5 shows the transfer functions W1(p), W2(p) and W3(p), 

reflecting the transformations: of the disturbing force F0 into some 

components: 

- component of the spindle displacement W1(p); 

- the resulting displacement of the workpiece in the displacement of 

the link "S-T" W2 (p); 

- the influence of the cutting process and the resulting displacement 

of the elastic link "S-T" into the second component of the workpiece 

displacement W3 (p), which reflects the dynamics of the link "T-W". 

The transfer function in operator form for the TC as a whole can be 

represented as: 

 

𝑊(𝑝) =
𝑊1(𝑝)[1−𝑊3(𝑝)]

1−𝑊2(𝑝)𝑊3(𝑝)
                                        (2.6) 
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3. SPINDLE DYNAMICS UNDER RANDOM IMPACT 

 

3.1. Frequency response of the Spindle-Cantilever system 

 

The elastic link “Spindle-Cantilever”, S-C (Figure 1.7) can be 

considered as a system with inertial, elastic and damping parameters. The 

force F0(t) (input signal) and displacement y(t) (output signal) are 

represented as stationary random processes (functions of time) with a 

Gaussian distribution law and zero mathematical expectation. Based on the 

motion equation of the S-C system: 

 

𝑚𝑦̈ + ℎ𝑦̇ + 𝑘𝑦 = 𝐹0(𝑡)                                (3.1) 

 

a frequency response H(f) can be defined, which identifies the relationship 

between the amplitudes |𝐻(𝑓)| and the phases 𝜑(𝑓) of the output and input 

signals. 

As is known [58], the frequency response of the system is defined as 

the Fourier transform Y(f) of the system's response (in this case, it is the 

displacement y(t)) to the impulse action: 

  




− ==

0

 2 )()()( fHdtetyfY ftj  , 

 

where f – cyclic frequency in Hz. 

The transformation of both sides of equation (3.1), because the Fourier 

transform of the impulse action of the force F(t) = δ(t) is equal to unity, is 
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the following expression in terms of the amplitude and phase 

characteristics: 

 

)()()( fjefHfH −= ,                               (3.2) 

 

where  

2 2
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             (3.3) 
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                      (3.4) 

 

In expression (3.4), we introduced the notation: 
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2

1
 ; 

2
== , 

 

where l – dimensionless quantity characterizing the damping of 

oscillations; 

fn – natural frequency of continuous oscillations (in Hz). 

Note that the dimension |𝐻(𝑓)| coincides with the dimension of 

compliance, mm/N. 

When considering a specific spindle assembly [31, 40] (Figure1.7, 

Table 1.2), which has the following parameters: {m = 25 N; h = 13.96 

N·s/mm; K = 38900 N/mm} – coefficient l, natural frequency fn and 

resonant frequency fr take the following values: {l = 0.02; fn = 19.86 Hz; fr 

= 19.84 Hz}. The resonant frequency is obtained by minimizing the 

denominator of the expression |𝐻(𝑓)| (3.3). 

The graphs |𝐻(𝑓)| and 𝜑(𝑓) given by expressions (3.3, 3.4) are 

shown in Figure 3.1 (a, b). 
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Analysis of expressions (3.3, 3.4) and the resulting graphs allows you 

to calculate and evaluate: 

1. The shift of the amplitude characteristic maximum downward 

relative to the natural frequency fn at 2/1l . This maximum 

corresponds to the resonant frequency fr and the numerical value: 

4

2
1043,6

12

1
)( −=

−
=

ll

k
fH r , mm/N. 

2. The bandwidth at the half-energy level of the amplitude 

characteristic as Br = f2-f1, and in the case of small damping l 0,1 is 

expressed in terms of fr: 

 

Br = 2l·fr = 0.79 Hz. 

 

3. A change in the phase response from 00 at frequencies much less 

than fn to 1800 at frequencies much higher than fn. The shape of the curve 

in Figure 3.1, b depends on the coefficient l, but at f = fn the phase 𝜑(𝑓) is 

equal to 900 regardless of the damping value l. 

When solving problems of the dynamics of technological systems, the 

most common law of change in the force F(t) as an input characteristic is 

the harmonic law: F(t) = F0·sin2πft. 

The output signal is the displacement of the spindle node y(t), obtained 

by multiplying the amplitude of the input signal F0 by the amplitude 

characteristic of the system, determined by the formula (4.3) and the phase 

shift 𝜑(𝑓) by an amount equal to the phase characteristic (3.4): 
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a 

 
b 

Figure 3.1. Amplitude (a) and frequency (b) parameters of the spindle 

 

For a linear system with constant parameters, the frequency response 

H(f) depends only on frequency and does not depend on either time or the 

type of the input signal. 
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The harmonic function F(t) at the input produces an output that is also 

a harmonic function with the same frequency; the deviation of the 

amplitudes of the output and input signals is equal to the amplitude 

characteristic of the system H(f) (3.3), and the phase shift between the 

output and input signals is set by the phase characteristic of the system (f) 

(3.4). 

The best approximation to the real picture of the TS oscillations is a 

polyharmonic process, which is the sum of the constant component and a 

certain number of harmonics. The experiment showed that the periodic 

oscillatory process of the spindle assembly is formed by the sum of two 

harmonic processes with frequencies of 20 and 28 Hz, i.e. the period of this 

process is 0.2 s. 

As is known, the presence of periodic components in a random 

process appears itself in the form of delta functions in its spectral density 

(sharp peaks). These peaks, especially at low amplitudes, can be 

mistakenly attributed to narrow-band random noise. But in the estimate of 

the spectral density calculated at high-frequency resolution, periodic 

components of even small amplitudes appear in the form of sharp maxima, 

which will grow in proportion to the decrease in the bandwidth. 

Let us consider the dependence F(t) as a polyharmonic signal with 

amplitudes F1 and F2: 

 

Fi(t)=F1sin2f1t+ F2sin2f2t,                  (3.5) 

 

which is mixed with the process at the output of the random noise generator 

(white noise signal). 

The change in forces in time at the input of the spindle assembly has 

a complex character, simulated by a noise signal. With the help of the 

“Signal Processing” software environment [35], the procedure for 

reproducing a complex signal and identifying the periodicity is carried out 

as follows: 
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1) set the interval and discreteness of the time axis: 

 

t = 0: 0.001: 0.6; 

 

2) introduce an expression for the signal Fi(t) (4.5); 

3) simulate a random component of the “white noise” type using the 

“rand (normal)” command [59] with zero mean and unit variance; 

4) combine the signal by superimposing a random component on a 

harmonic one: 

 

Zi (t) = Fi(t) + 2rand (t); 

 

5) calculate the spectral density SF(iw): 

 

( ) ( )
( ) lim

2

i i
F

T

Z i Z i
S i

T

 




→


= , 

 

where ( ) ( )i iZ i Z i = −  – complex conjugate functions representing the 

Fourier transform for the function Zi(t). 

To implement the last stage of the calculation and subsequent 

graphical interpretation of the random function, we will use the discrete 

Fourier transform. 

With the number of samples N = 256 (256-point fast Fourier transform 

(FFT)), the FFT of the signal yi(t) can be realized using Matlab – the “fft” 

command: 

 

( ) ( ( ),256).i iZ i fft y t =  

 

For the first 128 points (the other 128 points are symmetric) of the 

SF(iw) spectrum, graphical representation is carried out using the 

commands: 
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f = 1000(0:127)/256; 

plot (f, SF(i)(1:128)). 

 

Figure 3.2 shows a graph of the synthesized signal Zi(t) (Figure 3.2, 

a) and a graph of the spectral density (Figure 3.2, b). A clear separation of 

the two harmonics was achieved by reducing the sampling step “filtering 

high-frequency noise components”. 

The obtained frequency characteristics of the input parameters allow 

us to proceed to solve the problem of elastic-deformation description in a 

random setting. 

Let us establish the dependences connecting the spectral and mutual 

spectral densities of the spindle (rod) oscillation parameters in the i-th 

section with the corresponding characteristics of the disturbing forces. 

Denoting the Fourier transform of the rod deflection in the ith section 

through ( )iy j , we have: 

 

( ) ( ) j t

i iy j t e dt



−

−

= 
  , (3.6) 

 

where i(t) – transverse displacement of the rod in the i-th section at time 

t; =2f. 

As is known [60], if the domain of integration is not bounded, then 

the transformation ( )iy j  does not exist for a stationary random process 

expressed by the ensemble of realizations (t). 
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Figure 3.2. The output signal (a) and its spectrum (b) 
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3.2. Finite Fourier Transform and Spectral Windows 

If the elastic link "S-T" is considered as a linear system (additive and 

single-row) with constant parameters, then to ensure physical feasibility, 

the lower limit of integration in the Fourier transform is equal to 0, and not 

- . 

In practice, the parameter (t) is specified on an interval of finite 

length T, so that ( )y j  it is estimated by the finite (discrete) Fourier 

transform: 

 

0

( ) ( , ) ( )

T

j t

Ty j A j T t e dt−= = 
    

 

As a result of the final Fourier transform, the current spectrum А(j, 

T) of the signal yi(j) is obtained. 

The limitation of the observation interval is accompanied by spectrum 

distortion, which is modeled by a rectangular weight function w (t): 

1,  0 t T ;
( )

0, in other cases.         
w t

 
= 


 

 

The weight sequence {w(t)} is called a rectangular window [58, 61]. 

Let the signal (t) be defined on the interval t(-, ) and is 

characterized by the Fourier transform А(j). If the observation time is 

limited by the interval t [-T/2, T/2], then the signal 1(t) = (t)w(t) with 

frequency частотой 1 is actually observed. Integral Fourier transform 

F1(t) – the spectrum of this signal is represented as: 

 

 1

1  1 1  1

 1

sin( / 2)
( ) ( ) ( ) ( )  [ ( )] .
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The transition to a finite interval T leads to the convolution of the 

Fourier transform of the original signal (t) of infinite length with a 

function of the form sinc(x) = (sinx)/x, where x = T/2, as a result of which 

the calculated signal spectrum (t) turns out to be distorted (spectrum 

spreading). 

For the harmonic signal (t) characterizing the rod displacement, the 

following expression is used for the autocorrelation (covariance) function: 
2

0

0( ) cos  ,
2

R =


    

 

where  – time shift, s; 

 – circular frequency, s-1. 

The harmonic signal can be represented as: 

 

0 0

0 ( )
( )

2

j t j t
e e

t
j

−
−

=
 

 , 

 

whose two-sided spectrum consists of two components 

 
2

0
0 0( ) [ ( ) ( )],

4
A j


      = + + −  

 

represented in the form of two delta functions localized at the points  

 = -0 and  = 0. 

Analysis of this signal on a limited interval gives the current spectrum 

А1(j): 

 
2
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This spectrum is continuous and dispersed along the frequency axis. 

Its shape is determined by the sum of two functions sinc(T/2), which are 

oscillatory with damped side lobes. The main lobes of the sinc(T/2) 

functions have equal levels 2

0 / 2T , and their centers coincide with the 

frequencies  = 0. With an increase in the interval T, the spectrum is 

compressed, which is concentrated near the initial frequencies  =  0. 

Analysis of the spectral rectangular window (the spectrum of the 

window's sample sequence) shows that it has a lobe shape – the main and 

side lobes (Figure 3.3, a) [61]. 

The presence of side lobes leads to leakage of components whose 

frequencies are far from the main maximum of the spectral window, and 

to a strong distortion of the spectral estimate. 

The level of the side lobes of the window is characterized by the value 

of K (dB): 

 

K = 20 log A(0)/A1, 

 

where A1 – maximum value of the modulus of the largest of the side lobes 

of the spectral window (Figure 3.3, b). For the considered case of a 

rectangular window, the maximum side-lobe level is 0.217 (or -13.27 dB 

on a logarithmic scale), and the decay rate of the side peaks is 18 dB per 

octave (2/1=2). The side-lobe maxima are slowly reduced to 0.004  

(or -48 dB) at half the sample rate. 
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Figure 3.3. Spectral estimation of the output signal: 

a – comparison of spectra; b – spectral windows 
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The use of a rectangular weighting function in the time domain leads 

to energy leakage from the main to the side lobes (Figure 4.3, a) of the 

function of the corresponding spectral window [40, 58, 60]. Since half of 

the side lobes of the spectral window have negative values, it becomes 

possible to obtain erroneous (negative in sign) statistical estimates of 

spectral characteristics (sample spectrum). This circumstance is due to the 

magnitude of the extreme values of the first two lobes, which add up to 

about 20% of the maximum of the main lobe. To get rid of energy leakage 

into the side lobes, more complex weighting functions must be used. 

The latter include the Hanning, Hamming and Kaiser windows shown 

in Figure 3.3. 

The width of the main lobe of the frequency response of the Hamming 

window is twice that for a rectangular window. At the same time, the 

maximum side-lobe level is significantly lower than that of the rectangular 

window characteristic and amounts to 0.0074 (or -42.7 dB), and the 

envelope of the side-lobe maxima falls to about 0.000059 (or -65 dB) at a 

frequency equal to half the sampling rate. Thus, for the Hamming window, 

99.96% of the total spectrum energy is contained in the main lobe. 

The Kaiser window (Figure 3.3, a) is characterized by an even more 

intense fall-off of the side maxima, but the width of the main lobe 

(corresponding to the expansion of the filter's transition band) is 1.5 times 

greater than the corresponding parameter of the Hamming window. 

For the Kaiser window, the level of the largest side lobe is 0.00133 

(or -57 dB), and the envelope of the maxima of the side lobes drops to 

about 0.00002 (or -94 dB). 

The use of the Hamming and Hanning spectral windows makes it 

possible to reduce the variance of the spectral estimate. For the case of 

dividing the total observation length, the signal T into 10 segments (Tp = 

0.1T), 3/4·T/Tp, i.e. decreases to 7.5% of the variance of the estimate 

corresponding to the sample (unsmoothed) spectrum. At the same time, the 

error in estimating the spectral characteristics consists of two components 

– the variance (D) and the bias of the estimator ( )b   of the random variable 
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. The bias ( )b   is the systematic component of the error (variance – 

fluctuation component): 

  

 ( ) ,b M  = −  

 

where М{} is averaging over the set of realizations. 

As you know, the choice of the frequency band (filter band) f and 

the observation interval T should be based on a compromise: Тf→ 

(Т→; f→0; f Т→), because to obtain high statistical accuracy it is 

necessary to reduce the variance of the estimate, which for a given T 

corresponds to an increase in f. However, in this case, the estimate bias 

increases, which is proportional to the square of the bandwidth f [60]. 

For the case of smooth spectra, when the bias of the estimate can be 

neglected, statistical uncertainty is characteristic: 

( )
1

2 ,’f Т
−

 =  

 

when the band f and the time T cannot be known simultaneously without 

the value of the normalization error 
2 . One of the options for a 

compromise is to use the ratio [60]: 
1,  0,  0 1.f T   − =     

 

3.3. Experimental determination of the statistical  

characteristics of the spindle 

At the first natural frequency, the unit compliance obtained by the 

Fourier transform from the displacement (deflection) of the rod in the 0th 

section takes on the value: 
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                 (3.7) 

 

Fourier transforms of other initial parameters are determined 

similarly. When studying the displacements of the rod, we use the Fourier 

transform matrix Z0 of the following form: 

 

0 ( )

0
.

0

0

y j

=0Z  

 

To simplify the problem, in the case when the damping forces are 

proportional to the speed of transverse movement, and the sections of the 

rod between the concentrated masses are considered weightless, then the 

dependence between the Fourier transforms on the parameters at the 

boundaries of the cross-section “0-1” (Section 2.1) will be: 
 

1 1 0 0 0( ) ,y j U G y S = −  

 

where 0S  – matrix taking into account the effect of the concentrated force 

F0(t): 

3

0

0

0

0

( )F j l

EI



=0S  
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where 0 ( )F j  – Fourier transform of the force F0(t). 

The transfer matrix U1G0 takes into account the stiffness of the 

massless section of the rod U1 and the concentrated mass of the cantilever 

(boring bar) G0: 
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The value 1( )y j  takes on a complex value: 

 
5 9 2 19 3 18 4

1 5 2 2 8 2

9 15 2 18 3 19 4

5 2 2 8 2

2.57 10 1.8 10 9.46 10 1.32 10

(1 7 10 ) 2.79 10

4.3 10 5.65 10 3.16 10 3.96 10
.
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y

j
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The calculation of displacements in other conditional cross-sections 

of the elastic link “spindle-cantilever” was performed similarly. 

Dependences of displacement on frequency yi = f() for “0” and “1” cross-

sections are shown in Figure3.4, a; b. The maximum displacement value 

corresponds to the resonant frequency r = 119.56 s-1. 

 

 
Figure 3.4. Spindle displacement graphs in "0" and "1" sections 

 

Consider a sample that includes N = 241 independent values 0 ( )y j  of 

the normal value (2.7);  = 0, 1, ..., 240 s-1. 

Let us find 90% confidence intervals for the mean 
0y  and variance 

2

0y of a random variable 0 ( )y j  from the known dependencies: 

 

0

0

240; /2 240; /2

0 0

2 2
2

2 2

240; /2 240;1 /2

;           
241 241

240 240
      ,

y

y

st st
y y

s s

−

   
−   +   

   

 

 

 




 

 

 

where s – sample standard deviation; 

 – the level of significance; 

t(N-1), – Student's test with (N-1) degrees of freedom and confidence level 

1- (confidence level); 
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(N-1), – square distribution with (N-1) degrees of freedom and the same 

level of confidence (Helmert's criterion). 

Using the tabular data, we determine the values of the Student and 

Helmert criteria: for  = 0.1 criterion t240; 005 = 1.6514. 

Helmert's criterion N; for large N (N> 120) is calculated by the 

formula [58]: 
3

1;

2 2
( 1) 1 ,

9( 1) 9( 1)
N N Z

N N
−

 
 − − +  − − 

   

 

where Z – corresponding percentage point of the standard normal 

distribution. 

For the confidence level (1-)=0.9 and Z=1.64 we find: 

 
2 2

240;0.05 240;0.95277.02;  205.23= =  . 

 

The main statistical characteristics – sample mean y , variance s2, and 

standard deviation s are determined by the known dependencies: 

 

 

6 5 5

1

1
7.05 10 1.97 10 ;  2.09 10  ;

N

i

i

mm
y y i y

N N

− − −

=

= =  −  =   

( )
2

2 2 2 8

2

1
( ) 1.24 10 ;

1
i
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s x N x

N N

−= − = 
−
  

2 41.19 10  .
mm
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N

−= =   

 

The confidence intervals for characteristics 
0y  and 

0

2

y  with a 90% 

confidence level are: 
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 Figure 3.5 shows the confidence interval for the characteristic of 

displacement y0 in the zero section. 

 
Figure 3.5. The confidence interval for y0 

 

For the case of harmonic input x*(t) expressed in displacement units 

x*(t) = F(t)/k, the one-sided spectral density Gxx is represented as: 

 
2

0

02
( )

2
xx

F
G f f

k
= −


 , 

 

where 0( )f f−  – delta function localized at f = f0. 

The one-sided spectral density of the output signal Gyy, as a real even 

function of f, is determined from the following dependence: 
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    (3.8) 

 

where H(f) – amplitude characteristic of the elastic link of the spindle 

(2.3, b), mm/N; 

f0 – cyclic frequency, Hz; 

fn – natural frequency of continuous oscillations, Hz; 

l – oscillation damping coefficient. 

The corresponding covariance functions ( ) xxR   and ( ) yyR  are even 

functions of  (time shift) are: 
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Graphs of functions x*(t) and ( ) yyR  are presented in Fig. 3.6, a; b. 
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Figure 3.6. Spindle static characteristics 

 

It should be noted that the input signal x(t) = F(t), described by a 

harmonic function, has the following values of the probability density p(x) 

and the distribution function P(x): 
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The graphs of the functions P(x) and p(x) are shown in Figure 4.6, c; 

d. 
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In the general case of estimating the covariance function, the error  

is equal to: 

( )
1

2 21
( ( )) 1 ( ) ,

2
yy yyR

BT

− +     

 

where 
( )

( ) .
(0)

yy

yy

yy

R

R
=


   

For various variants of the ratios of the covariance functions  = (0.2; 

0.34; 0.56; 1), the graph  is shown in Figure 3.7. 

 

 

Figure 3.7. Normalized random error 

 

The relationships between the input x(t) and the output process y(t) 

are described by the mutual covariance Rxy(τ) and the mutual spectral 

density Gxy (f). 

The one-sided, physically measurable mutual spectral density as a 

ratio for the mutual spectrum of input and output processes is a complex 

expression: 

 

( ) ( ) ( ).xy xxG f H f G f=   
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The last expression can be split into two formulas containing, 

respectively, the amplitude H(f) and phase φ(f) characteristics of the 

system: 
( )

( ) ( ) ;xyj f

xy xyG f G f e
−

=   

xy( ) ( ) ( );  ( ) ( ).xy xxG f H f G f f f = =  

 

The delta function (f-f0) is included in the amplitude characteristic of 

the cross-spectrum. 

To estimate the spectral density of oscillations of the "spindle-

cantilever" (S-C) system (a system with one degree of freedom), let us 

assume about the form of the input action in the form of white noise. This 

assumption implies a narrowing of the bandwidth of the Be spectrum. 

Within this narrow band, the spectral density Gxx(f) changes little and can 

be expressed: Gxx(f) = G, where G – constant, measured in units of the S-C 

mass displacement, the spectral density of the disturbance entering the 

system. In this case, the spectral density of the output signal (displacement) 

Gyy(f) (3.8) is represented as: 

 
2 2

0

 2
2 2

/
.

1 ( / ) (2 / )
yy

n n

F k
G

f f lf f
=
 − + 

 

 

As noted above, the error in estimating the spectral characteristic 

includes two components – the bias by and the variance y. 

To determine the maximum bias b(Gyy), we use the relationship [58]: 

b(Gyy)=- (Be/Br) /3, 

 

where Br – half-energy passband in the region of the resonance maximum 

of the Br spectrum (Br = 0.79 Hz). Usually, Be = Br/4 = 0.198 Hz is taken, 
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which gives an insignificant systematic error b ≈ -2%. A minus sign means 

that the spectral density estimate is below the true value. 

When determining the variance of the spectral density, assuming the 

form of the input signal of the white noise type, it was noted that the 

spectrum of the output process is essentially independent of frequency 

[58]. Consequently, for a small width Be, the normalized random 

estimation error is: 

1
( ( )) .r xx

e

G f
B T

=  

 

In contrast to the systematic error b, the error r decreases with an 

increase in the realization length T and for Be = 0.198 Hz should exceed 

500 s (r  10% = 0.1). 

If we consider the estimate of the quantity ( )xxG f% obtained by the 

finite Fourier transform in the form: 

 

22
( ) ( , ) ,xxG f X f t

T
=                             (3.9) 

 

where 2 2 2( , ) ( , ) ( , )k iX f t X f T X f T= +  – amplitude characteristic, the real 

and imaginary components of which are normative uncorrelated random 

variables with zero means and equal variances (the Fourier transform is a 

linear operation). 

A decrease in the error of the spectral value calculated by the above 

equation is achieved by calculating estimates for nd different (non-

overlapping) sections of realizations of length T each and their subsequent 

averaging. In this case, the minimum total implementation length required 

to obtain a spectrum estimate is Tr  = ndT; resolution Be = 1/T and the 

smoothed estimate has an error: 
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1
.r

e rB T
=  

 

The expression for the minimum realization length Tr and the number 

of averaging nd = BeTr required to obtain spectral estimates with a given 

error  is: 

2 2

1 1
;  .r d

e

T n
B

= =
 

 

 

For a given resolution, Be = 0.198 Hz and an error  = 0.1, the number 

of averaging is nd = 100, and the implementation length, as already 

mentioned, is Tr ≥ 500 s. 

The confidence interval with a confidence level of 1- for the spectral 

density Gxx (f) based on the estimate ( )xxG f  is written as 

 

2 2

1; /2 1;1 /2

( 1) ( ) ( 1) ( )
( ) ,xx xx

xx

N N

N G f N G f
G f

− − −

− −
 

  
               (3.10) 

 

where N is the number of independent observations of a random variable 

(input signal x(t) = F(t)); 
2

2/;1 −N  – Halmert criterion with (N-1) degrees of freedom and 

confidence level (1-). 

The estimate ( )xxG  calculated by the formula (3.9) represents the 

current spectrum (3.6), which must be multiplied by a scale factor 
8

3
 that 

considers the loss caused by using the Hanning spectral window. 

Thus, ( )xxG  it can be represented as: 
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Figure 3.9 shows a graph of the current spectrum smoothed by the 

Hanning window. 

 

 

Figure 3.9. Evaluation of the sample spectrum ˆ ( )xxG   

 

The confidence interval for the spectral density Gxx(), at  = 90  s-1 

in accordance with (3.10) will be equal to 

 

2 2
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At a frequency of  = 90, s-1, the estimate of the spectral density of 

the input signal is ( )yyG f = 3.1·109 N2/Hz, and the confidence interval is 

within the following limits (at a confidence level of 0.9): 

 

2,69109  Gxx()  3,69109.
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4. MODELING OF SPINDLE NODES OF METAL  

CUTTING MACHINES IN THE "APM WINMACHINE" 

ENVIRONMENT 

 

4.1. Modeling the spindle node of a multipurpose lathe 

An analysis of the balance of compliance and vibration modes of the 

main nodes of lathes showed that the main shaping nodes: Spindle-

Workpiece (S-W) and carriage group-tool (Ca-T) predetermine the quality 

of the machine as a whole. The characteristics of rigidity and vibrostability 

of the spindle on elastic supports depend on the size of the cantilever part 

of both the spindle itself and the length of the workpiece. The fixation of 

the processing scheme with a certain overhang and the construction on this 

basis of the calculation schemes [15, 62, 63] do not make it possible to 

effectively control the rigidity and vibrostability within the working space 

of the machine. 

The approach to the construction of static formulas (sf) of the spindle 

presented in [3] is promising. This approach is effective when using unified 

spindle nodes equipped with a wide range of modular equipment. At the 

same time, the authors considered one variant of loading with a single 

cantilever force, without taking into account the forces in the gearing 

"gearbox output shaft - spindle". 

Consider a variant of the combined loading of a two-bearing spindle 

node (Figure 4.1) of a multi-purpose machine model MC-03, mounted on 

angular contact ball bearings 4-46209 and 4-46112, mounted according to 

the "tandem-O" scheme with a spring-type preload (rear support) and by 

interference with two intermediate bushings for the double front support. 
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а 

 
b 

Figure 4.1. Structural (a) and design (b) schemes 

 

The considered machine is equipped with a set of modular equipment: 

- a three-jaw chuck fixed to the spindle with an intermediate flange; 

- a rotating center mounted in the tapered hole of the spindle quill and 

designed for processing long parts; 

- grinding arbor mounted in the tapered bore of the spindle; 

- drill chuck with a set of bushings with an angular table pre-mounted 

on the support table (and, if necessary, a vice); 

- boring bar, mounted on the threaded part of the spindle, providing 

boring operations for the manufacture of parts mounted on an additional 

corner table with a carriage; 

- a milling arbor with an end mill with the necessary set of taper 

bushings, installed in the taper hole of the spindle (the machine is equipped 

with an angle table and a vice). 
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To assess the characteristics of the compliance of the spindle node, 

considering the size of the working area of the machine, a program was 

developed in the mathematical environment "Maple" [64–66] and using the 

kernel of symbolic mathematics, a static form was obtained sf = f (lk) for 

various cantilever lengths lk of the spindle node of a multi-purpose machine 

MC03: 

 

sf =0,29·10-4+0,332·10-6·lk +0,507·10
-8· 2

kl  

 

A resulting analytical form is an effective tool for determining and 

modeling the stiffness characteristics within the working space of the 

machine. There is a possibility of a quick statistical calculation of this or 

that adjustment, using the nomograms "sf – lk", which consists of two parts: 

the statistical form sf and the graph of the cantilever compliance Δk. 

Analysis of the results obtained shows the presence of a significant 

reserve of stiffness (the maximum deflection on the spindle cantilever 

(Figure 4.1) is ymax = f = 0.027 mm, and the angle of rotation of the 

cantilever section is 0.0289 rad). In this case, the deflection arrow on the 

inter-support part at [f] = 0.0003·l should not exceed lim

maxy = 0.0873 mm. 

The permissible angle of rotation of the spindle end must not exceed [θ] = 

0.0572 degrees. Close numerical values of compliance are obtained as a 

result of calculations using the APM Shaft module [26, 67]. 

At the same time, the APM Shaft module cannot consider the angular 

compliance of the spindle node, which affects the deformation parameters 

of the designed structure [67–70]. 

For effective modeling, calculation of the stress-strain state taking 

into account the angular compliance of the supports, we use the module for 

complex analysis of three-dimensional structures APM Structure3D [26, 

71, 72]. 

In the process of modeling in the APM Structure 3D environment, a 

"skeleton" model of the spindle structure is created (Figure 4.2), in which 

the boundaries of the rod elements are determined by the nodes at those 
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points where the load is applied or the bending stiffness of the section 

changes. Each rod has specific dimensions and is connected with nodes to 

the rest of the structure rods. 

To calculate this structure, you must additionally set: 

- cross-sections for each of the rods; 

- supports for the created structure, which determines its position in 

space; 

- external loads acting on the structure; 

- material parameters of structural elements. 

 

 
Figure 4.2. Skeleton model of the spindle structure 

 

A feature of specifying supports is the ability to combine in one 

support the rigid and elastic fastening, each of which is a completely 

different object. They will work together when they act in different 

directions of the coordinate system at the node. For the designed structure, 

displacements in the direction of action of forces Py (Z-axis) and Fr (elastic 

fastening) and rotation around the Z-axis are allowed. In the rigid restraint 

mode, by turning on the checkboxes in the fields for displacement in the 

direction of the axis, restrictions on displacement in the direction of the X 

and Y axes, as well as rotations around the same axes, should be set. 

Calculation in the APM Structure3D environment allows you to 

evaluate the complete picture of the stress-strain state of the spindle in any 

of its sections, including the assessment of loads, force factors, etc., 

presented in the "Results" menu item. In Figure 4.3. presents the stress field 

characteristic of a typical turning operation performed on a multi-purpose 

machine MC-03 and the stress distribution in the i-th section of the spindle. 
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Per the colour scale (Figure 4.3), the maximum values of the 

equivalent stress SVM (according to the energy theory of strength) do not 

exceed the permissible yield stresses ([τ] = 635 MPa for the Steel 20X 

spindle material) even with a yield safety factor kτ = 2. 

 

 
Figure 4.3. Spindle stress field of the machine MC-03 

 

Evaluation of the dynamic quality of functioning is associated with 

the determination of natural frequencies and the corresponding natural 

vibration modes. The calculation of these dynamic characteristics was 

carried out in the APM Structure 3D module [26]. By default, the system 

calculated 16 natural frequencies and shapes with an accuracy of 0.01%. 

In Figure 4.4 is a table of natural frequencies and the 3rd and 4th natural 

forms, describing the configuration of the spindle model, vibrating with the 

corresponding frequencies. 

When the elastic system of the spindle unit vibrates, the main bending 

form prevails, therefore, the system can be considered as a second-order 

linear vibrational link, the transfer function W(iw) of which is shown in 

Figure 4.5. Programs for constructing the transfer function, amplitude-

phase frequency (APFC), amplitude-frequency A = f(w) and phase-

frequency characteristics φ = f(w) were developed in the mathematical 

environment "Matlab". 

The APFC of elastic systems makes it possible to compare various 

adjustments with the modular equipment listed above in the cutoff length 

segment of the characteristic on the imaginary axis Im. The ratio of the 

segment length to the static compliance determines the dynamic factor at 

resonance for the i-th natural vibration frequency. In contrast to static 

compliance, the dynamic coefficient takes into account inertial and 
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damping properties and, therefore, more fully characterizes the elastic 

system of the spindle node of a multi-purpose lathe model MS-03. 

 

 
а 

 
б 

 
в 

Figure 4.4. Spindle dynamic characteristics: 

a – table of natural frequencies; b – the natural form of oscillations at the 3rd 

natural frequency; c – the natural form of oscillations at the 4th natural frequency 
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Figure4.5. Frequency characteristics of the spindle node 

 

4.2. Modeling the spindle node of a multipurpose milling  

machine using the APM Structure 3D module 

The spindle units of milling machines as the end links of the drive for 

the machine main movement are evaluated according to a set of criteria: 

load capacity, accuracy, rigidity and reliability. Several works are known 
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[18, 35, 73] that use approximate and refined calculation methods, based 

mainly on the use of matrix calculus algorithms and numerical methods of 

initial parameters. At the same time, the most common representation of 

the spindle node considers it as a linearly deformable system, in which the 

displacement of the spindle nodes is expressed as a linear function of the 

applied forces does not allow solving this problem in a complex manner. 

Let us consider the problem of calculating the horizontal spindle of 

the main motion drive for a multi-operation machine model SF68VF4. The 

design and calculation diagram of this machine spindle node is shown in 

Figure 4.6. 

For modern milling machines, double-bearing spindles are often used, 

which differ in size and design of the cantilever part. In the SF68VF4 

machine, the spindle is mounted on two supports on double angular contact 

ball bearings with a preload according to the "tandem - O" scheme. In the 

front support, bearings of an extra-light series 2-446113 GOST 832-78 

with a contact angle α = 260 are used. The outer rings of these bearings are 

facing each other with opposite ends. The tandem connection type is 

characterized by its ability to withstand large axial unidirectional loads. 

The radial load capacity and the radial stiffness depend on the amount of 

preload performed. When mounting such a connection, it is necessary to 

strictly check the coincidence of the contact angles of the bearings α. The 

rear support is mounted with two extra-light series angular contact ball 

bearings 2-446112 GOST 832-78. 

 

 
Structural scheme 
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Design scheme 

Figure 4.6. Structural and design diagram of the spindle node 

 

In the general case, this design scheme should be considered as a 

statically indeterminate beam on four supports (bearing-support), which in 

the general case have linear A and angular compliance α (Figure 4.6). To 

reduce the labor intensity, it is sufficient to correctly replace the double 

bearings with one support, passing to a two-support design scheme [73, 

74]. 

According to the proposed design scheme, SN is represented as an 

elastic system "spindle-cantilever" (S-C), the compliance of which Δ is 

determined as the sum of the individual components: 1 2 3 =  + + . To 

determine these components, we will form a mathematical model of the 

elastic system in the form of a set of static equations: 

 

' 0;r fR R R+ − =                                  (4.1) 

( )1 1

' 0.
r f k r f

R l l R l R l m m + +  +  − − =                  (4.2) 

 

We add two equations to this statically indeterminate second-order 

system: 

- deflection equation (for a beam of constant cross-section): 
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( )
( ) ( )

3 2
2 3

0 0
2 6 6 2

f fr r
R x l m x lm x R x

y x y x
E I E I E I E I


 −  − 

= +  + − − +
       

 (4.3) 

 

- the equation of the angle of rotation 

( )
( ) ( )

2
2

0 .
2 2

fr fr
R x l m x lm x R x

y x
E I E I E I E I

 +
 −  − 

 = − − +
     

     (4.4) 

 

where E – modulus of elasticity of the spindle material; I - an average axial 

moment of inertia of the spindle cross-section. 

Equation (4.3) was obtained from the elastic line equation using the 

method of initial parameters [3, 18], and equation (4.4) was obtained by 

calculating the derivative concerning the coordinate. 

For a given design scheme (Figure 4.2), the boundary conditions are 

satisfied: 

( )

( )

0 ;

;

r r

f f

y A R

y l A R

= 

= 
  

( )

( )

0 ;

.

r r

f f

y a m

y l a m

 = 

 = 
              (4.5) 

 

after substitution into equations (4.3) and (4.4), it allows one to compose a 

system of four linear algebraic equations with unknowns ,  ,  ,  r п rfR R m m

. Let's write this system in matrix form: 
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Defining a static spindle form 

 

Calculation ( )y x  and ( )y x  is carried out for the coordinate X 

coinciding with the right end of the spindle ( )1x l l= + . Several options are 

possible here. The first is numerical, typical for the situation of designing 

special and specialized machine tools. For universal and broadly universal 

machine tools, when the basic designs of the control cabinet are unified 

and only the designs of the cantilevers are changed, a general solution with 

the selection of the component ( )2 3st =  + is advisable. The latter is 

assigned the name of the static form SN [3, 73] and is defined as follows: 

 

( )2
1x l l

y x
= +

 = ; ( )3
1

.k x l l
l y x

= +
 =   

 

Spindle node compliance Δ, reduced to the cutting place, is calculated 

according to the dependence 

 

( ) ( )1 1 1 1
,

k st
y l l l y l l = + +  + + = +  

 

where 
1  depends only on the design and dimensions of the cantilever, and 

for a beam of the constant cross-section can be expressed in the form: 

 
3

1 .
3 k

l

E I
 =

 
 

 

Experiments to assess the rigidity of the spindle node were carried out. 

In the planning process, experiments are broken down into a series of 

experiments (according to the number of factors). The minimum number 

of experiments min 5N =  in each series. After conducting experiments 

according to the drawn-up plan, the displacements of the spindle node at 
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the end of the spindle y are measured at least three times to determine the 

average values. The compliance values are calculated at the same point. 

Experimental and calculated data are presented in Table. 4.1. 

 

Table. 4.1. 

Experienced and calculated data 

Loading  

r
F , N 

( )
calc

y  ( )
opt

y  Error y ,% 

2000 0.0103 0.0095 7.8 

3000 0.0155 0.014 9.7 

4000 0.0207 0.022 6 

5000 0.0258 0.0282 8.5 

 

Based on the data obtained, a graph of experimental dependences is 

built (Figure 4.7): ( ).rF f y=  

 

 

Figure 4.7. Empirical dependence ( )r
F f y= graph 
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Investigation of the compliance of Drilling-Milling-Boring  

machine tools using static forms 

 

During the formation of static forms according to the above method, 

machine tools representing the drilling-milling-boring group were 

identified: 

1. Drilling-milling-boring machine MC51 with spindle taper 30 AT5 

following GOST 15945-82. 

2. Universal specialized machine model SF68PF4 with a 40 cone 

following GOST 936-82 for horizontal and vertical spindles. 

3. Multi-purpose specialized horizontal machine model MTs200PF4V 

with a 40AT5 cone following GOST 15945-82. 

 

Received static formulars: 

 

 = ( )2 3 +   = )(xy +lk )(xy  

 

for the above machines MC51, SF68PF4 (SF68), MTs200PF4V (MTs200) 

are given in Table. 4.2. 
 

Table. 4.2 

Static formulars of spindle units 

Initial data 

Static formular δ,  

mm/N Pattern 

Dimensions,  

mm 

Compliance 

(10-8), mm/N 

l l1 Ar Af ar af 

MC51 114 35 631 589 0.15 0.15 
(-85.25-2.00 lk+0.11 lk

2) 

10-8 

SF68 148 68 399 393 0.06 0.06 
(30.37+0.61 lk+0.042 

lk
2) 10-8 

MTs200 193 95 439 432 0.06 0.06 
(66.75+4.85lk +0.069 

lk
2) 10-8 
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The designer often needs to quickly make a static calculation of a 

particular adjustment. This can be done using a nomogram, which consists 

of two parts: a static formular   (Figure 4.8, a), built according to the 

formulas of Table 4.2, and a compliance graph of the cantilever Δ1 (Figure 

4.8, b), built for cantilevers of constant cross-section and various values 

diameters dk. The cantilever is considered as a beam clamped in the support 

section and loaded at the cutting point with a unified force. 
 

 

Figure 4.8. Compliance of spindle assemblies (nomogram): 

a) – static forms; b) – compliance of cantilevers 

 

To determine the compliance of the spindle node reduced to the 

cutting place on the nomogram, it is enough to know the overhang to the 

cutter lk and the diameter dk of the cantilever. The compliance δ at the cutter 

is determined by the sum 2 3+  of the values and Δ1 found on the 

nomogram. 

In some cases, the inaccuracy in determining the general compliance 

of the spindle node is associated with the absence of data on the elastic 

properties of bearing supports in the design model. Let us consider how the 

inaccuracy in determining the linear compliance A0 of one bearing affects 

the results of a static calculation [3]. For the spindle node of the machine 

tool model SF68PF4, the calculated value of compliance Ar = 3.99·10-6 and 

Af = 3.93 10-6, mm/N. Let's take two more values of linear compliance with 

deviations: 

1. Ar1 = 2.59·10-6 and Ar2 = 5.39·10-6, mm/N; 2. Af1 = 2.55·10-6 and  

Af2 = 5.305·10-6, mm/N, 
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and angular compliance of one bearing: 

1.ar1 = 0.039·10-8 and ar2 = 0.081·10-8, 1/(N·mm); 2. af1 = 0.039 ·10-8  

and af2 = 0.081·10-8, 1/(N·mm) 

In this case, the formulars will look like: 

1. δ = (-71.05 + 0.62 lk +0.044·
2
kl )·10-8; 

2. δ = (161.67 + 1.148 lk +0.043·
2
kl )·10-8. 

In Figure 4.9, the dependences δ on lk are plotted, from which it 

follows that even a significant (up to 35%) deviation of the linear 

compliance A0 of one bearing in both directions (over or understatement) 

from the nominal value has little effect on the compliance of the spindle-

cantilever system as a whole: 

 

 

Figure 4.9. Investigation of the Spindle Node static formular machine SF68PF4 

 

On the other hand, if you do not take into account the angular stiffness 

of a single bearing (a0→∞), then we get the following static form (Figure 

4.8 – curve marked with a solid line): 

 = (1093+16.09 Lk+0.097
2
kl ) 10-8. 

It is necessary to consider the angular compliance of a single bearing 

since the calculated value  of the spindle node increases by 3.2 times. 

Besides, as can be seen from the calculations, a change in the linear 

compliance Ar and Af of the spindle supports within a fairly wide range 

without a corresponding change in its diameter does not significantly 

change the compliance of the spindle node (does not exceed 35%). 
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The complication of calculations of spindle nodes for rigidity and 

vibrostability, taking into account the distribution and modes of change in 

stresses, sizes and sections, requires the use of advanced computer-aided 

design systems. One of the effective means of solving time-consuming 

design tasks for creating optimal machine-building structures is the APM 

Structure 3D module [28, 39]. 

The APM Structure 3D module is designed to analyze the stress-strain 

state of arbitrary three-dimensional machine-building structures consisting 

of a rod, plate, shell and volume elements in their arbitrary combination. 

The calculation is performed by a numerical method - the finite element 

method (FEM) and allows you to calculate the values of stresses and strains 

at any point in the structure, taking into account the own weight of each of 

the elements and taking into account stress concentrators. Determination 

of unknown force factors at each of the mesh nodes and internal force 

factors within each finite element provide information for spline, threaded 

and other connections. 

The use of the APM Structure 3D module involves the construction 

of a 3D model of the spindle assembly. In the environment of the integrated 

CAD KOMPAS [11, 64], three-dimensional models of the main motion 

drive for the SF68PF4 machine have been built. It gives an idea of the 

device and kinematic chains of transmission of motion from the electric 

motor to the spindle of the machine equipped with a high-speed head 

(Figure 4.9 and Figure 4.10). 
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Figure 4.9. 3D model of the main drive 

 

 
Figure 4.10. Kinematics of the main movement of the milling machine 

 

Using a set of KOMPAS applied libraries, a solid model of the 

assembly of the spindle node of the SF68PF4 machine tool (Figure 4.11) 

and the spindle itself (Figure 4.12) 
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Figure 4.11. Three-dimensional model of the spindle node assembly (section) 

 

 
Figure 4.12. Three-dimensional model of the spindle (section) 

 

To perform comprehensive engineering analysis, both individual parts 

and assemblies, we will use the APM FEM module [26, 67, 75], equipped 

with the CAE-library that implements the solution of engineering problems 

by the finite element method. 

The APM FEM system is a module integrated into KOMPAS-3D and 

represents a toolkit for the preparation and subsequent finite element 

analysis of a three-dimensional solid model. 

The development of a 3D model and the assignment of material is 

carried out using the KOMPAS-3D system. Within APM FEM, you can 

apply loads of various types, specify boundary conditions, create a finite 

element mesh, and perform a calculation. In this case, the procedure for 

generating finite elements is carried out automatically. 

APM FEM allows you the following types of calculations to carry out: 

- static calculation; 

- calculation of stability; 

- calculation of natural frequencies and vibration modes; 

- thermal calculation. 

As a result of calculations performed by the APM FEM system, the 

following information can be obtained: 
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- a map of the distribution of loads, stresses, deformations in the 

structure; 

- safety factor of the structure; 

- frequencies and forms of natural vibrations of the structure; 

- a map of temperature distribution in the structure; 

- mass and inertia moment of the model, coordinates of the gravity 

center. 

The APM FEM system was developed at STC APM for express finite 

element strength analysis in KOMPAS-3D. The more advanced 

functionality of finite element analysis of imported models is available in 

the APM WinMachine system in the APM Studio and APM Structure3D 

modules. 

At the same time, APM Structure3D provides the ability to edit finite 

element meshes (FE-mesh), create combined (rod-plate-volumetric) 

models, as well as solve high-dimensional problems. 

In the process of solving the problems of rigidity and vibrostability of 

structures, fixings and applied loads are assign; coincident faces are assign 

(for FE-analysis of an assembly); FE-mesh is generated; calculation and 

viewing of results in the form of maps of stresses and displacements are 

performed. 

For the above spindle design (Figure 4.12), an FE mesh is built (Figure 

4.13). 

The FE-mesh is generated using the FE-mesh command. The 

parameters of this operation are the Maximum length of the side of the 

element, the Maximum coefficient of thickening at the surface and the 

Сoefficient of expansion in the volume. So the parameter Maximum 

thickening factor on the surface determines how much the next element 

can be made (where necessary) smaller. Thus, when moving to smaller 

parts of the structure, the FE-mesh generator gets the right to create a finite 

element k times smaller than the previous FE. 
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Figure 4.13 Generation of finite element mesh by calculation method MT 

FRONTAL (using multi-core processor) 

 

To assess the stress-strain state in various sections of the spindle, we 

will carry out a static calculation by the finite element method. The module 

can use the Frontal calculation method, which is intended for structures 

consisting of a large number of finite elements. The method differs in that 

the ensemble stiffness matrix is not compiled directly in the computer's 

RAM, and the system of equations is solved by the “front” in all degrees 

of freedom. The global matrix is saved to disk. A distinctive feature of 

MT_Frontal is the use of a multi-core processor. The fields of stresses and 

displacements in different sections of the spindle are shown in Figure 4.14 

and Figure 4.15. 
 

 
Figure 4.14. Fields of equivalent von Mises stresses 

(4th energy theory of strength) 
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Figure 4.15. Accumulated Linear Displacement Fields 

 

To control the quality of finite element splitting and assess the stress 

state, a part of the mesh can be hidden by setting the Viewing depth (Figure 

4.16). By default, the section plane is the same as the view plane. 

 

 
Figure 4.16. Fields of equivalent von Mises stresses 

(using depth tools) 

 

 Figure 4.17 allows you to estimate the level of spindle deformations: 
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Figure 4.17. Displacement fields 

 

To calculate stability in the APM FEM module there is a choice of a 

solution method. The less time-consuming Arnoldi iteration method is 

used as a worker - a method for solving a generalized eigenvalue problem 

that allows you to obtain a safety factor with relatively little processor time. 

However, the method does not allow obtaining a solution for systems with 

a large number of degrees of freedom. The parameters of the relative 

computational accuracy and the maximum number of iterations are set for 

both methods. 

To assess the level of natural vibrations (Figure 4.18), the “Subspace” 

and “MKL Subspace” methods are used. MKL Subspace is used by default, 

as it is the fastest when working with sparse matrices. 

For this, the Eigenfrequencies command is updated, with the help of 

which a window is formed with the natural frequencies and modal masses 

of the structure. Click the shape button to view the vibration form. For the 

selected frequency, the corresponding vibration forms are displayed on the 

screen (Figure4.19 and Figure4.20). 
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Figure 4.18. Frequencies of natural vibrations of the spindle 

 

 

 
Figure 4.19. Form of vibration of the spindle at the 1st natural frequency 

 

 

 
Figure 4. 20. Form of the spindle vibration at the 2nd natural frequency 

 

 

The module also allows you to determine other inertial characteristics 

of the designed spindle structure (Figure 4.21) 
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Figure 4.21. Inertial characteristics of the spindle model: 

weight; the center of gravity of the model; moments of inertia of the model 

 

To obtain a complete picture of the spindle stress-strain state in any 

of its sections, including the assessment of loads, force factors, etc., it is 

necessary to use another APM Structure 3D module, which is part of the 

APM WinMachine CAD. Table 4.2 shows the calculation results 

 

Table 4.2 

Loads on nodes. Load: Load 0 

N Type 
Node 

number 
Projection Module 

   on X on Y on Z  

0 Force, Н 0 -6442.00 0.00 -5187.00 8270.69 

1 Force, Н 3 -2355.00 0.00 -2616.00 3519.87 

 

Nodes displacement (Load 0) 

N Linear displacement [mm] Angular displacement [Grad] 

 X Y Z X Y Z 

0 -0.0707 6.56e-038 -0.0576 0.0251 -0.0454 -0.0297 

1 -0.0504 6.56e-038 -0.0412 0.0135 -0.00234 -0.0182 

2 -0.0226 2.54e-037 -0.0219 -0.000167 0.00946 -0.00135 

3 -0.0254 3.1e-021 -0.0293 -0.00428 0.0191 0.00236 

Efforts at member nodes (Load 0) 
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Rod, index 0 (Rod 0) 

Node 

number 
Force [N] Moment [N*m] 

 
Fx 

(axial) 
Fy Fz 

Mx 

(torsion) 
My Mz 

0 -0.00 5187.00 6442.00 347.00 0.00 -29.00 

1 -0.00 5187.00 6442.00 347.00 -289.89 -262.41 

 

Rod, index 1 (Rod 1) 

Node 

number 
Force [N] Moment [N*m] 

 
Fx 

(axial) 
Fy Fz 

Mx 

(torsion) 
My Mz 

1 0.00 1485.91 1894.83 138.92 -121.73 -102.34 

2 0.00 1485.91 1894.83 138.92 -390.79 -313.34 

 

Rod, index 2 (Rod 2) 

Node 

number 
Force [N] Moment [N*m] 

 
Fx 

(axial) 
Fy Fz 

Mx 

(torsion) 
My Mz 

2 -0.00 -2616.00 -2355.00 347.00 -346.18 -384.55 

3 -0.00 -2616.00 -2355.00 347.00 0.00 -0.00 

Total structure weight – 7.89 kg 

Maximum displacement – 0.09 mm (Rod 0) (Load 0) 

 

Nod stress (max.), [MPa] (Load 0) 

N Name  Nodes 
Equivalent 

stress 

0 Rod 0 0,1 124 

1 Rod 1 1,2 24.7 

2 Rod 2 2,3 12.2 

Maximum stress 123.6 MPa (Rod 0) (Load 0) 

 

Analysis of the results obtained allows you to choose the best design 

solutions, working with various loads and their combinations. At the same 
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time, it becomes possible to design structures close to equal strength in 

terms of strength, rigidity and vibrostability criteria. 

 

4.3. Modeling the spindle node of the machining  

center model MTs200PF4 

Spindle node (SN) of machining centers are complex mechanical 

systems consisting of elastic elements of various types, combined into a 

single structure of the shaping generating units of the machine and are the 

object of modeling and research. 

There are several significant factors [1, 2, 50] that affect the process 

of creating a rational version of the spindle node. These include some 

design and technological characteristics: unit layout; the geometry of the 

parts included in it; material properties of parts (modulus of elasticity, 

density, damping coefficient, etc.); axial interference of bearings and 

methods of their creation and others. In addition, the designer's decision-

making is influenced by technological characteristics: errors of parts 

(different dimensions, roughness, deviation from roundness, etc.) and 

assembly errors. Finally, the influence of operating conditions (external 

loads, lubrication parameters, thermal conductivity, etc.) is important. 

There are quantitative relationships between the input and output data, 

which determine the spindle node complex mathematical model, the 

research of which can be carried out in the environment of various 

computer-aided design systems. 

It is advisable to research the influence of input factors on the spindle 

design using integrated CAD systems. The construction of a complex 

mathematical model of the SN is preceded by the choice of a CAD system, 

in which 3D modeling and research of the properties of the designed object 

will be carried out. There are many requirements for design systems, 

including adaptability, customizability of systems for the tasks of a 

particular industry, the use of libraries, reference books and applications 
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that significantly expand the capabilities of the basic CAD package, the 

use of photorealistic tools, and others. 

To create 3D models of complex mechanical engineering structures, 

it is promising to use the well-known integrated CAD KOMPAS-3D, 

developed by ASCON. The fundamental difference between KOMPAS-

3D is the use of its mathematical kernel and parametric technologies, and 

the cost of its implementation at the enterprise is an order of magnitude 

lower than the well-known foreign CAD systems. In the new version of the 

KOMPAS-3D system [76, 77], the user interface has been improved, the 

functionality of three-dimensional modeling has been significantly 

expanded, tools for working with graphic documents, variables, and 

application libraries have been replenished. CAD KOMPAS-3D V18 is 

one of the advanced updates to this popular package, which will be based 

on the technology of integrated end-to-end 3D product design. 

At the same time, the creation of a complex spindle node is not limited 

to its geometric modeling. It is impossible to produce competitive products 

without a comprehensive engineering analysis of the designed facility. The 

adopted design solutions should provide static strength and rigidity, 

stability and suitable dynamic characteristics leading to the optimal option. 

As a result of integration with CAD APM WinMachine [27], a CAE-

library appeared in the KOMPAS-3D system, which implements solutions 

of engineering problems by the finite element method as applied to the 

problems of engineering analysis. At the same time, it should be borne in 

mind that at the same time the internal structure of the production 

organization and the lack of the necessary funds do not allow implementing 

a single end-to-end ideology of information exchange. 

An alternative to the implementation of a single integrated system 

within the design and technological departments of an enterprise is the 

problem of data transfer between systems with different presentation 

formats. In favour of this approach and the factor of continuity of old and 

new projects, the use of existing databases [78]. The problem of data 

transfer is effectively solved in the SolidWorks system, which in the basic 
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version supports a large set of formats for importing three-dimensional 

objects and 2D drawings. In addition to the standard tools for importing 

files through the dxf, step, iges, sat formats, the SolidWorks system is 

equipped with translators for models of parts and assemblies from other 

systems. 

Thus, the problem arises of improving the process of 3D modeling 

and research of the spindle node of the machining center using the 

integrated CAD KOMPAS and SolidWorks. 

To research this problem, interrelated tasks are solved, which are 

formulated as follows: 

1. Develop a 3D model of the spindle node using CAD KOMPAS. 

2. To carry out a research of the stress-deformation characteristics of 

the spindle node using the finite element method in the CAD environment 

SolidWorks. 

3. Assess the dynamic characteristics of the projected spindle node. 

Consider the spindle assembly of the MTs200PF4V machining center, 

which is a two-bearing structure (Figure 4.22), mounted on two rolling 

bearings: 

- front support in the form of triplex – a set of three angular contact 

ball bearings 2-46113, mounted according to the "Tandem-X" scheme with 

a preload in the form of two bushings of different heights; 

- the rear support is a set of two angular contact ball bearings 2-46111, 

mounted according to the "X-shaped" scheme with a preload in the form 

of two bushings of different heights. 

 

 
Figure 4.22. Structural diagram of the spindle assembly 
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Based on the developed solid models of individual parts in the KOMPAS-

3D environment (Figure 4.23), a 3D model of the spindle device structure was 

created [79, 80], the realism of which was achieved thanks to the Photo360 module 

included in SolidWorks (Figure 4.24). 

 

 

 
a 

 
b 

 
c 

 
d 

Figure 4.23. Solid model parts: 

  a - sleeve; b - flange; c - half-coupling; d – nut 
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a b 

Figure 4.24. Solid model of the spindle assembly: 

a – 3D model with rendering; b – SN section 

 

The research of the spindle assembly according to the stiffness 

criterion is carried out using SolidWorks Simulation (SW Simulation). 

This module, which is part of SolidWorks, fully integrates with the 3D 

model of the product created in CAD KOMPAS, which makes it possible 

to optimize the design. The 3D design changes are carried over to the 

product drawings. Solidworks Simulation provides stress, loss of stability, 

and frequency and thermal analysis. 

Static research of the spindle is carried out in SolidWorks in a certain 

sequence, starting with the specification of the material, the choice of the 

attachment points and the type of supports, followed by loading by forces 

and moments [81–83]. A feature of the SW Simulation engineering 

analysis package is that both the imposition of constraints and the 

application of forces are carried out to the surface as a whole. In this regard, 

an additional procedure is introduced for splitting surfaces by constructing 

auxiliary planes and parting lines projected onto the spindle surface. At this 

stage, it is effective to define the supports that are modeled by the bearings 

in SW Simulation and enter their axial and radial stiffness. 

To assess the manufacturability of the structure assembly, it is 

effective to use animation tools (Figure 4.25), performed in SolidWorks 

Simulation [19]. 
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Figure 4.25. OTs200 spindle assembly animation 

 

 

The procedure for creating a finite element mesh in SW allows both 

to use the system recommendations and to control the size of the finite 

element to increase the accuracy of calculations [84]. When calculating the 

stress-strain state, the units of measurement and the type of the diagram are 

selected in the Properties Window. As a result of such a calculation of the 

spindle, displacement diagrams were obtained on an enlarged scale (Figure 

4.26). 
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a 

 
b 

 
c d 

Figure 4.26. Spindle calculation results:  a – fixing and loading scheme; b – finite 

element mesh; c – displacement in the horizontal plane; d – displacement in the 

vertical plane (on a larger scale) 

 

As a result of calculations of the stress-strain state by Mohr's method, 

the displacements of the spindle node under the action of cutting forces and 

the force that can arise in the gear clutch in the event of shaft misalignment 

were estimated [85–87]. The most difficult case was calculated when the 

cutting force and the force acting in the cam clutch are oriented in the same 

direction. 

The total deflection is found by the formula: 

 

2 2 2 20.017 0.027 0.031 mm.h vy y y = + = + =  
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With a permissible deflection of 0.04 mm, it can be argued that the 

required rigidity is provided. 

The resulting elastic line of the spindle corresponds to the design 

model with rigid supports. Considering the compliance of the supports [26] 

somewhat changes the picture of the stress-strain state, the characteristics 

of which are presented in Table 4.3 

 

Table 4.3 

Summary table of spindle stiffness characteristics 
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 Vert. Hor. Total Vert. Hor. Total Total Total 

0 0.027 0.017 0.031 0.075 0.084 0.113 
0.04 

0.022 0.045 
0.06 

98 - - - 0.017 0.041 0.044 0.012 0.036 

 

According to calculations, displacements in the front support on three 

angular-contact thrust bearings (with a fixed stiffness j = 98000 N/mm) 

slightly exceed the permissible values. At the same time, the presence of 

parts that provide axial fixation (spacers, rings) increases the rigidity of the 

spindle device, which makes it possible to consider the considered design 

option as satisfying the rigidity criterion. 

To assess the dynamic quality of the spindle functioning, the MatLab 

mathematical environment was used, in which programs for researching 

frequency characteristics were developed [59]. In the complex-frequency 

domain, the amplitude and phase-frequency characteristics of the elastic 

system of the spindle, the cutting process, the open and closed-loop system 

"Spindle-Cutting process" is built (Figure 4.27 - Figure 4.31) 
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Figure 4.27. APFC of the elastic system of the spindle machine model 

MTs200PF4V 

 

 
Figure 4.28. APFC of the cutting process on the machine model MTs200PF4V 
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Figure 4.29. Frequency characteristics of the elastic spindle system 

 

APFC of the elastic spindle systems makes it possible to compare 

various adjustments with modular equipment in terms of the length of the 

segment cut off by the characteristic on the imaginary Im-axis. The ratio of 

the length of this segment to the static compliance determines the dynamic 

factor at resonance for the i-th natural vibration frequency. Unlike static 

compliance, the dynamic coefficient takes into account the inertial and 

damping properties and, therefore, more fully characterizes the elastic 

system of the spindle assembly of the MTs200PF4V model machining 

center. 
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Figure 4.30. APFC of the closed system "spindle-cutting operation" 

 

The analysis of the results obtained indicates the effectiveness of the 

complex procedure of 3D-modeling in CAD KOMPAS-3D and the 

calculation of the stress-strain state by the method of finite elements in 

SolidWorks Simulation. This approach is to implement the procedure of 

multivariate design and search for the optimal design of the spindle 

assembly in terms of rigidity and vibrostability. 
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CONCLUSIONS 

 

1. Methods and procedures for the dynamics of spindle units of metal-

cutting machines, as closed-loop dynamic systems, including a set of 

elastic links and work processes have been developed. 

2. The dynamics of the elastic link "Spindle-Arbor-Tool" (SAT) of 

multifunctional CNC machines of the drilling-milling-boring group has 

been researched. Static and dynamic forms of the spindle assembly have 

been obtained, linking the SAT compliance and the length of the Arbor-

Tool cantilever overhang, which allow modeling structures with a variable 

cantilever part. 

3. Considered the presentation of the conical connection of the spindle 

and the arbor shank, in the form of a matrix of an elastic-friction joint, 

elastic concerning transverse and angular displacements. The APFC of the 

spindle assembly with and without regard to the compliance of the Spindle-

Arbor joint is constructed.  Taking into account the compliance of the 

Spindle-Arbor joint with the help of the hinge matrix leads to an increase 

in the vibration amplitude three times up to 0.083 μm/H) at increased 

frequencies. The modulus minRe also decreases to - 0.0439 μm/N. 

4. The calculation of the dynamic characteristics of rapidly rotating 

spindles, taking into account the centrifugal forces and gyroscopic 

moments in the bearings at a steady state of motion. It is noted that at 

speeds of rotation of the bearing inner ring (duplexed supports on angular 

contact thrust bearings are considered) more than 1100 rpm, it is necessary 

to take into account the inertial factors Fc and Mg and consider this 

calculation problem as quasi-static. 

5. Software has been developed and frequency characteristics of open 

and closed-loop systems "Spindle-Arbor-Tool" – "Cutting Process" – 
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"Table-Workpiece" in the MATLAB mathematical environment have been 

built. 

6. A research of the stability of elastic links "Spindle-Arbor-Tool" and 

"Table-Workpiece" was carried out using the toolkit of one- and two-

parameter D-partitions based on the analysis of the number of the 

characteristic equation roots. Experimentally researched two options of 

adjustments at different lengths of the cantilever and determined the 

optimal value of the depth of cut, the cutting coefficient and the time 

constant of chip formation, ensuring stable operation of the cutting process. 

The analysis of the SAT dynamic system stability allows designers when 

designing adjustments and assessing the technological capabilities of 

machine tools, to determine the maximum length of the cantilever 

(overhang of the tool block) for vibration-free processing. 

7. The values of the natural frequencies of the carrier system of the 

drilling-milling-boring machine are determined and the vibration modes 

are constructed at those natural frequencies that are characterized by a 

relatively high level of vibration of the tool and the workpiece. The 

analysis of the experimental amplitude-frequency characteristics showed 

that low-frequency oscillations of the carrier system are of the greatest 

interest. Based on the pattern of points displacements of the machine elastic 

system, classification of its main nodes with division into arrays and rods 

(elastic beams) is carried out. The analysis of vibration modes made it 

possible to neglect the of some joints compliance, which significantly 

reduced the complexity of the preparatory stage of the calculation. Such 

joints include the "column-carriage" and "carriage-vertical table" joints. 

The graphic representation of the TC elastic links deformations allows you 

to more clearly orient yourself at the first stage of the dynamic’s 

calculations and, therefore, improve the quality of the final calculations. 

8. The procedure to the real picture approximation of the spindle 

assembly oscillations using the polyharmonic process is considered. With 

the help of the “Signal Processing” software environment, the process of 
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reproducing a complex signal and the allocation of its periodicity is 

realized. To improve the estimates of the signal spectral density at the input 

of the spindle elastic system, the spectral windows of Hamming and 

Hanning are used, which makes it possible to reduce the variance of the 

spectral estimate. The analysis of the efficiency of using various spectral 

windows in the "Signal Processing" environment is presented. 

9. Experimental researches of the spindle node dynamics of a 

multifunctional lathe have been carried out, and in the mathematical 

environment "Maple" (using the kernel of symbolic mathematics) a static 

form has been obtained to assess the compliance of the spindle with 

varying the length of the tool block. The calculation of the spindle stress-

strain state in any of its cross-sections in the APM Structure3D 

environment has been carried out. It makes it possible to evaluate the 

complete picture, including the assessment of loads, force factors, etc. It is 

shown that during the vibrations of the spindle node elastic system, the 

basic bending shape prevails. It gives a basis for considering the designed 

object as a second-order linear vibrational link. With the help of the 

constructed APFC, it is possible to compare various adjustments in terms 

of the dynamism coefficient, which takes into account the inertial and 

damping properties and, therefore, more fully characterizes the elastic 

system of the spindle assembly of a multi-purpose lathe. 

10. Static forms of multifunctional milling machines are calculated 

and nomograms, consisting of constant and variable parts are constructed. 

To perform a comprehensive engineering analysis of both the spindle and 

the spindle assembly, the APM FEM module was used. This module 

integrated into KOMPAS-3D and equipped with a CAE-library that 

implements solutions of engineering problems by the finite element 

method. 

11. A comprehensive procedure for modeling and analyzing the 

design of the spindle assembly for a multifunctional machining center 

using CAD KOMPAS and CAD SolidWorks has been implemented. 
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12. Solid models of the main parts of the spindle device consisting of 

149 units in the CAD KOMPAC 3D environment were built. Based on 3D 

models of components, the assembly of the spindle node is implemented 

using the procedures for imposing realistic textures in the Photo360 

module. The modeling of the assembly process of the structure using the 

animation tools SolidWorks Simulation has been performed. 
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